

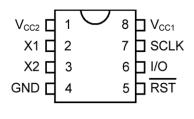
概述涓流充电时基芯片

1. 概述

GC1302 内部集成一个 RTC (实时时钟)、100 年日历和 31 个字节的静态 RAM。通过简单的串行接口与微处理器进行数据传输。芯片提供秒、分钟、小时、星期、日期、月份和年份等信息,并能根据月份或闰年情况自动调整月份的结束日期。时钟的工作方式为 24 小时制或 12 小时制,在 12 小时工作时,可用 AM/PM 显示来区分上午和下午。

GC1302 与微处理器的接口采用简单的三线同步串行方式:

- 1) \overline{RST} (reset):
- 2) I/O (data line);
- 3) SCLK (serial clock)。数据可以从 CLOCK/RAM 中送出或者写入,每次一个字节,或者是最多可达 31 字节的一帧。适合在低电压下工作,保持数据和时钟信息的功耗小于 1 μw。


GC1302 除了具有基本的时基功能外,还具有一个可编程的涓流充电器和双电源引脚,可十分方便的连接主、备用电源。另外还有 31 个字节的暂存器。

2. 特点

- ◆ 实时时钟(RTC)包括: 秒、分钟、小时、星期、日期、月份和年以及包括闰年校正的信息,保证直到2100年显示正确的日历;
- ◆ 31 个字节 NVRAM 存储数据;
- ◆ 简单的三线串行 I/0 接口;
- ◆ 工作电压: 2.0V~5.5V:
- ◆ 电源电压为 2.0V 时, 电流消耗小于 300nA:
- ◆ 帧模式读写 Clock/RAM 中的连续地址;
- ◆ 外封装形式有 DIP8 引脚及 SOP8 引脚两种:
- ◆ 与 TTL 兼容 (Vcc=5V);
- ◆ 保持和 Dallas 的 DS1302 管脚功能、参数完全一致。

3. 管脚图

DIP8 引脚

SOP8 引脚

4. 管脚描述

- ◆ X1, X2: 32768Hz 晶体接入脚
- ◆ GND: 地线
- ◆ RST: 清零
- ◆ I/O: 数据 In/Out
- ◆ SCLK: 串口时钟
- ◆ Vcc1, Vcc2: 电源接入脚

5. 极限参数

- ◆ 电压 (以地为参考点): -0.5V ~ +7.0V
- ◆ 贮存温度: -55℃ ~ +125℃
- ◆ 焊接温度(10秒 DIP): 260℃
- ◆ 民品温度范围 $(V_{cc}=2.0V\sim5.5V$): 0°C $^{\sim}$ +70°C
- ◆ 工业品温度范围 (V_{cc} = 2.0V ~ 5.5V): -40℃ ~ +85℃
- ◆ 军品温度范围 (V_{cc} = 2.0V ~ 5.5V): -55°C ~ +125°C

6. 推荐直流工作条件

(在允许工作范围内 *)

						(EXCTINE	, ,
参数		符号	最小	典型	最大	单位	注释
· · · · · · · · · · · · · · · · · · ·	V _{CC1} ,		2.0		5.5	V	8
电源电压 V _{CC1} , V _{CC2}	V_{CC2}						
逻辑1输入	$ m V_{IH}$		2.0		V _{CC} +	V	
之					0.3		
逻辑0输入	17	$V_{CC} = 2.0V$	-0.3	·	+0.3	17	
	$V_{ m IL}$	$V_{\rm CC} = 5V$	-0.3		+0.8	V	

^{*}除非特殊说明

直流电参数

在允许工作范围内*

参数		符号	最小	典型	最大	单位	注释
输入漏电流	I_{LI}				+500	μΑ	3
输入/输出漏电流	I_{LO}				+500	μA	3
逻辑1 输出 $I_{OH} = -0.4 mA$ $I_{OH} = -1.0 mA$	V _{OH}	$V_{CC} = 2.0V$ $V_{CC} = 5V$	1.6 2.4			V	
逻辑 o 输出 $I_{OL} = 1.5 mA$	V _{OL}	$V_{CC} = 2.0V$ $V_{CC} = 5V$	2		0.4	V	
$I_{ m OL}=4.0{ m mA}$ 交流电流	I _{CC1A}	$V_{CC1} = 2.0V$			0.4	mA	2,9
文机电机	ICCIA	$V_{CC1} = 5V$			1.2	ША	2,9
计时电流 (振荡器开)	I _{CC1T}	$V_{CC1} = 2.0V$ $V_{CC1} = 5V$			0.3	μΑ	1,9
待机电流 (振荡器关)	I _{CC1S}	$V_{CC1} = 2.0V$ $V_{CC1} = 5V$ IND			100 100 200	nA	7,9,11
交流电流	I _{CC2A}	$V_{CC2} = 2.0V$ $V_{CC2} = 5V$			0.425 1.28	mA	2,10
计时电流 (振荡器开)	I _{CC2T}	$V_{CC2} = 2.0V$ $V_{CC2} = 5V$			25.3 81	μΑ	1,10
待机电流 (振荡器关)	I _{CC2S}	$V_{CC2} = 2.0V$ $V_{CC2} = 5V$			25 80	μΑ	7,10
涓流充电电阻	R1 R2 R3			2 4 8		kΩ kΩ kΩ	
涓流充电二极管电压降	V_{TD}			0.7		V	

^{*}除非特殊说明

7. 交流电参数

(在允许工作范围内 *)

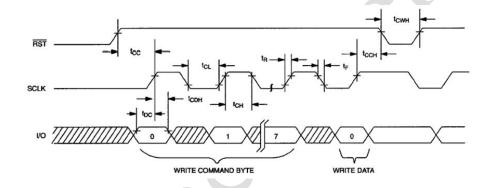
				,		- AGIMPS
	符号	最小	典型	最大	单位	注释
t_{DC}	$V_{CC} = 2.0V$	200			ns	4
topu					ns	4
CBII		70		000		
t _{CDD}					ns	4,5,6
СББ				200		
tcı					ns	4
-CL						
tcu					ns	4
·CH		250				
t _{CLK}					MHz	4
		DC				
tp. tr					ns	4
rk, tr				500		
tcc		4			IIS	4
400		1			μο	<u>'</u>
t _{CCH}					ns	4
$t_{\rm CWH}$					μs	4
		1				
t_{CDZ}					ns	4
				70		
t _{CCZ}	$V_{CC} = 2.0V$			280	ns	4
	$V_{CC} = 5V$			70		
	tcdh tcdh tcdd tcl tch tch tch tck tr, tr tcc tcch tcch	$\begin{array}{c c} t_{DC} & V_{CC} = 2.0V \\ \hline V_{CC} = 5V \\ \hline \\ t_{CDH} & V_{CC} = 5V \\ \hline \\ t_{CDD} & V_{CC} = 5V \\ \hline \\ t_{CDD} & V_{CC} = 5V \\ \hline \\ t_{CL} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CL} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CLK} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CLK} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CC} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CC} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CCH} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ t_{CWH} & V_{CC} = 5V \\ \hline \\ t_{CDZ} & V_{CC} = 2.0V \\ \hline \\ V_{CC} = 5V \\ \hline \\ V_{CC}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	特号 最小 典型 最大 単位 t_{DC} $V_{CC} = 2.0V 200$ ns

^{*} 除非特殊说明

8. 电容


(TA = 25°℃)

参数	符号	最小	典型	最大	单位	注释
输入电容	$C_{\rm I}$		10		pF	
输入输出电容	C _{I/O}		15		pF	
晶体电容	C _X		6		pF	



9. 时序图

9.1 读数据传送

9.2 写数据传送

注释:

- 1) ICC1T 和 ICC2T 是在 I/O 开路, RESET 设置为逻辑 0, 时钟停止标志为 0(振荡器开启) 的情况下测得的;
- 2) ICC1A 和 ICC2A 是在 I/O 管脚开路, RESET 设置为逻辑 1 的情况下测得的; VCC = 5V 时, SCLK = 2MHz;
 - 3) RESET、SCLK 和 I/O 均有 40k Ω 的下拉电阻接地;
 - 4) 在 VIH = 2.0V 或者 VIL = 0.8V 并且上升和下降的最大时间是 10ns 时测得的;
 - 5) 在 VOH = 2.4V 或者 VOL = 0.4V 情况下测得的;
 - 6) 负载电容为 50pF;
- 7) ICC1S 和 ICC2S 是在 RESET、I/O 和 SCLK 开路、时钟停止标志必须设置为逻辑 1(振荡器无效)的情况下测得的:
 - 8) 当 Vcc2 >Vcc1 + 0.2V时, Vcc = Vcc2; 当 Vcc1 > Vcc2时, Vcc = Vcc1;
 - 9) Vcc2 = 0V:
 - 10) Vcc1 = 0V;
 - 11) 25℃时为典型值。

10. 功能框图

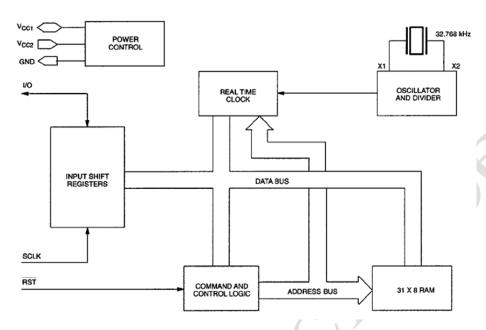
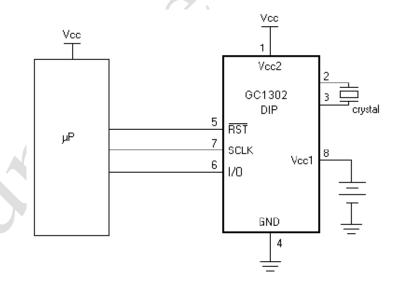



图 1 功能框图

11. 典型应用电路图

12. 信号描述

12.1 Vcc1

Vcc1 在单电源系统中可以低功耗操作、也可以在电池供电系统中作低电源备份电源,当作为涓流充电系统引用时,再充电源连接到 Vcc1 管脚。

12. 2 Vcc2

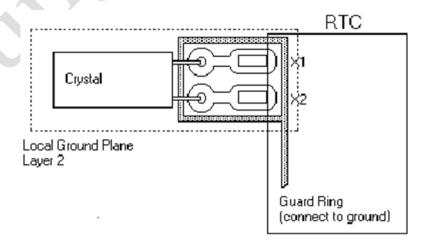
在双电源配置中,Vcc2 是主要的电源供应管脚。Vcc1 连接到备份电源以在缺少主电源的情况下保存时间和数据。 GC2302 可选择 Vcc1 和 Vcc2 之间电压高的一个作为电源电压,当 Vcc2 大于 Vcc1+0. 2V 时,Vcc2 为电源。当 Vcc2 小于 Vcc1 时,Vcc1 为电源。

12.3 SCLK(串行时钟输入)

SCLK 用来同步串行接口上的数据移动。内置 40k Ω的下拉电阻。

12.4 I/0 (数据输入/输出)

I/0 是 3 线接口的双向数据管脚。内置 $40k\Omega$ 的下拉电阻。


12.5 \overline{RST} (Reset)

在读或写期间, reset 信号必须维持高。内置 40k Ω的下拉电阻。

12.6 X1, X2

连接 32.768kHz 石英晶体。内置振荡器适合 6pF 负载电容的晶体工作。也可以用 32.768kHz 的外部振荡器驱动 GC2302 工作。此时 X1 管脚连接外部振荡器信号,X2 管脚悬空。

13. 推荐晶振印刷版图

14. 命令字节

命令字节如图 2 所示。每次数据的传送都是由一个命令字节初始化的。MSB (第 7 位)必须是逻辑 1,如果是 0,GC1302 将不能被写入。第 6 位用来区分是时钟/日历数据还是 RAM 数据,是 0 时为时钟/日历数据,是 1 时为 RAM 数据。第 5 位到第 1 位指明寄存器的地址,LSB (0 位)指定是读操作还是写操作,是 0 时为写操作,是 1 时为读操作。命令字节总是从 LSB (0 位)开始输入。

15. 地址/命令字节

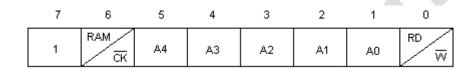


图 2 地址/命令字节

16. RESET 和时钟控制

所有的数据转换都是通过将 RESET 置高来进行初始化。RESET 输入具有两个功能:第一,RESET 打开控制逻辑,以允许地址/指令序列访问移位寄存器。第二,RESET 信号提供一个终止数据传送的方法,不论是单个字节还是多字节的传送。

时钟周期是由一个上升沿和一个下降沿组成的序列。对于数据输入,在时钟上升沿期间数据必须有效,数据位在时钟下降沿输出。如果 RESET 被置为低,所有的数据传送终止,同时 I/0 管脚变为高阻抗状态。数据传送的图解如图 3 所示。上电时,RESET 必须为逻辑 0,直到 Vcc>2. OV。当 RESET 为逻辑 1 状态时,SCLK 必须在逻辑 0。

17. 数据传送图解

SINGLE BYTE READ

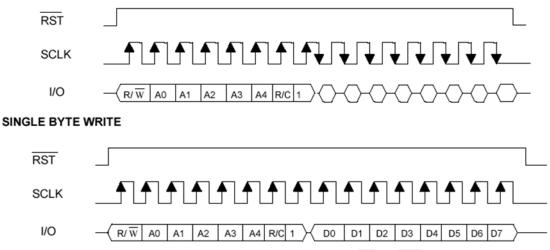


图 3 数据传送图解

在帧模式下, RESET 保持高电平并且 SCLK 开始循环直到帧结束。

18. 时钟精度

时钟的精度取决于晶体的精度以及振荡器电路的负载电容与晶体的微调电容之间匹配的精度。温度漂移引起晶体频率的漂移将增加额外的错误。外部电路噪声耦合到振荡器电路可能导致时钟变快。

19. 数据输入

首先,用八个 SCLK 时钟输入一个写命令字节,然后在下一次八个 SCLK 循环的上升沿输入数据字节。另外,SCLK 的误触发可以忽略。数据从 0 位开始输入。

20. 数据输出

首先,用八个 SCLK 时钟输入一个读命令字节,在下一次八个 SCLK 循环的下降沿输出数据字节。注意:在写入命令字节的最后一位以后的第一个 SCLK 下降沿传输第一个数据位。

另外,只要 RESET 是高电平,SCLK 误触发所发送的数据就可以忽略。该操作允许以帧模式连续读取数据,此时,在 SCLK 的上升沿,所有的管脚都是三态的。数据从 0 位开始输出。

21. 帧模式

无论是对于时钟/日历或者 RAM 寄存器而言,帧模式被指定寻址第 31 单元(十进制,地址/命令位从 1 到 5=逻辑 1)。如前所述,6 位确定时钟或 RAM,0 位确定读或写。时钟/命令寄存器中的 9 到 31 单元以及 RAM 寄存器的 31 单元没有数据储存能力。帧模式下,0 地址的 0 位开始读或写。

当帧模式下写时钟寄存器时,对于传送数据,第一个 8 位寄存器必须按次序写入数据。 然而,当帧模式下写到 RAM 时,不需要将所有的 31 字节写入数据。无论所有的 31 字节有没 有写入,每一个被写入的字节都会传送到 RAM。

22. 时钟暂停标志

秒寄存器的最高位 (7位) 为时钟暂停标志位。当该位设置为逻辑 1 时,时钟晶振停止,同时 GC1302 进入低功耗空闲状态,此时漏电流小于 100nA。当该位设置为逻辑 0 时,时钟正常工作。电源上电后,该位无定义。

23. 12 小时(AM/PM)和 24 小时模式

小时计数器的第7位为选择24小时模式。在24小时模式下,第5位是第二个10小时位(20-23小时)。

24. 写保护位

控制寄存器的7位是写保护位。开始的7位(0-6位)被强制为0并且总是读为0。在任何写操作到时钟或RAM之前,7位必须为0。为高时,写保护位阻止写操作到任何的寄存器。电源上电后,该位的最初状态没有定义。在进行写操作之前,必须清0。

25. 寄存器地址/定义

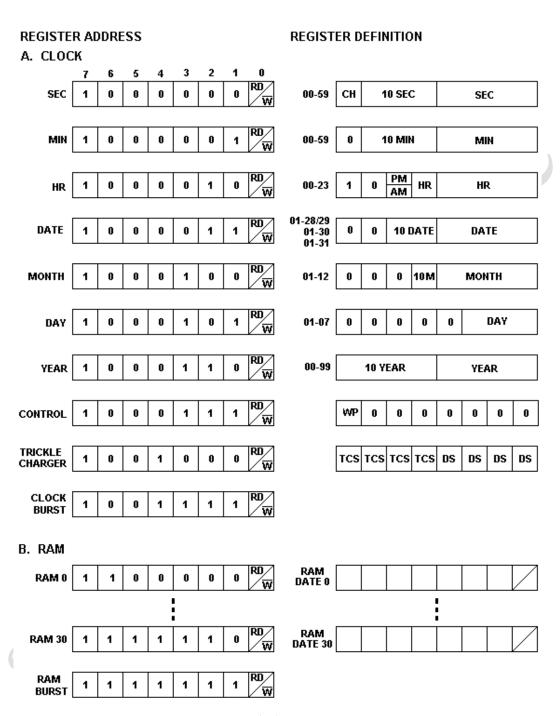


图 4 寄存器地址/定义

26. 时钟/日历

时钟/日历包括7个写/读寄存器,如图4所示。时钟/日历寄存器中的数据为BCD码。

27. 时钟/日历帧模式

时钟/日历命令字节指定帧模式工作。此模式下,第一个八位时钟/日历寄存器可以连续读或写(如图 4 所示),从 0 地址的 0 位开始。

当指定为写时钟/日历帧模式时,如果写保护位设置为高,那么八位中的任何时钟/日历 寄存器(包括控制寄存器)都不会发生数据传送。帧模式对涓流充电没有影响。

在时钟帧开始读时,当前的时间传送到第二组寄存器。时间讯息从第二组寄存器中读出, 此时时钟继续工作,这样可以消除再读第一组寄存器时,由于第一组寄存器正在更新而引起 的第二次读操作。

28. RAM

静态 RAM 是由 31 x 8 字节构成的连续地址。

29. RAM 帧模式

RAM 命令字节指定帧模式操作。在这种模式下,31 个 RAM 寄存器可在 0 地址的 0 位连续的读或写(见图 4)

30. 寄存器图解

(见图4)

31. 涓流充电寄存器

寄存器控制 GC1302 的涓流充电特征。图 5 的简化电路图给出涓流充电的基本元件。涓流充电选择位 (TCS) 控制涓流充电的选择。为了防止意外发生,只有 1010 模式允许涓流充电。其它模式禁止涓流充电。GC1302 上电时,禁止涓流充电。二极管选择 (DS) 位 (2-3 位) 无论是选择一个二极管还是两个二极管都连接在 Vcc2 和 Vcc1 之间。若 DS 是 01,选择一个二极管,若是 10,则选择两个二极管。如果 DS 是 00 或 11,则涓流充电被禁止,与涓流充电选择位 (TCS) 无关。Rs 位 (0-1 位) 选择连接在 Vcc2 与 Vcc1 之间的电阻。通过电阻选择位选择电阻如下:

RS Bits	Resistor	Typical Value
00		
01	R1	2k Ω
10	R2	4 kΩ
11	R3	8 kΩ

如果 RS 是 00, 涓流充电禁止, 与涓流充电选择位 (TCS) 无关。

用户可根据电池或者充电电容的最大电流来选择二极管和电阻。最大充电电流的计算如下例。假定 5V 的电源连接到 Vcc2, 充电电容连接到 Vcc1。同时假定允许涓流充电,在 Vcc2和 Vcc1之间连接一个二极管和电阻 R1,则可以根据下列公式计算最大电流 IMAX:

IMAX = $(5.0V - diode drop)/R1 \approx (5.0V - 0.7V)/2k\Omega \approx 2.2mA$ 随着电容充电,Vcc1 与 Vcc2 之间的电压会减小,充电电流也会减小。

32. 可编程涓流充电(图5)

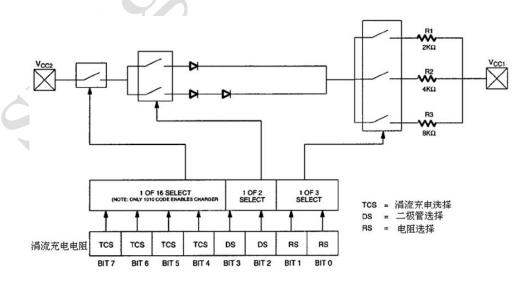
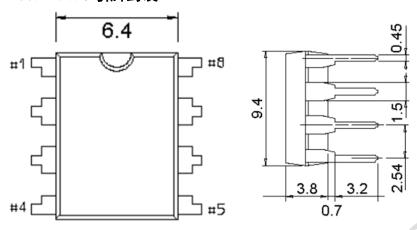
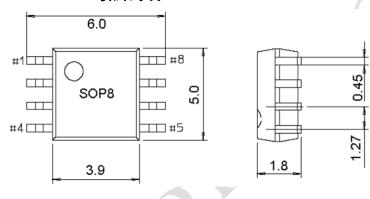



图 5 可编程涓流充电


33. 封装形式

33.1 DIP8 引脚封装

单位: mm

33. 2SOP8 引脚封装

单位: mm

34. 订货信息

产品型号	供货方式
GC1302AD	DIP8 引脚封装,塑管,每管 50 只
GC1302AP	SOP8 引脚封装,塑管,每管 100 只