

自动量程数字万用表芯片

1. 概述

GC7910A 是双竞公司开发的一种使用 3V 电池供电, 具有自动校准功能, 以及多种新功能的自动量程数字万用表芯片。

GC7910A 集成了大于 4KHz 带宽的真有效值测量转换模块、用于电压量程切换的精密比例电阻,因而大幅度减少了仪表外部的元器件数量,明显提高了生产效率和成品可靠性。

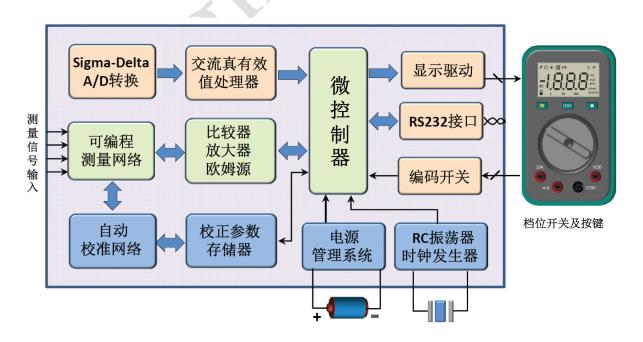
GC7910A 具备了自动校准的功能,芯片内部集成了多种测量参数校准必需的电路,和用于存储校准参数的非易失存储器。

GC7910A 具有的测量功能除了基本的电压、电流电阻之外还包括:电容量,频率,连通性测量,二极管极性判断,三极管放大倍数等。

GC7910A 还可通过加入少数分立器件简单地实现非接触式测试模式 (NCV)。

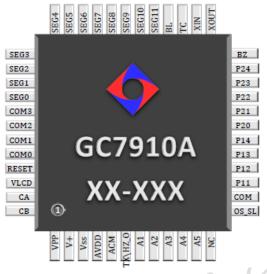
2. 特点

- ◆ 电源电压范围: 2.4V~3.6V
- ◆ 工作电流: 小于 2mA (DCV 模式), 待机电流: 2μA
- ◆ 测量显示范围: 1999
- ◆ 内置 50ppm 精密带隙基准源
- ◆ 电源低电压报警显示功能。
- ◆ 自动关机时间: 15 分/30 分钟(用户可选择,校准时决定)
- ◆ 自动/手动量程转换
- ◆ 可选 NCV 测量模式
- ◆ 集成交流真有效值转换(4KHz 输入正弦波信号)
- ◆ 集成全波段测量自动校准组件
- ◆ 被测参数的自动判断和测量
- ◆ 电容快速检测
- ◆ 频率测量
- ◆ 封装形式有 LQFP48 和 COB 封装


3. 可测量参数

- ◆ 直流电压: 199.9mV, 1.999V, 19.99V, 199.9V, 1999V (1010/610V-0L)。
- ◆ 交流电压: 199.9mV, 1.999V, 19.99V, 199.9V, 1999V (760/610V-0L)。
- ◆ 直流电流:199.9 µ A /1999 µ A, 19.99mA/199.9mA, 1.999A/20.00A (万能表)。
- ◆ 交流电流: 199.9 μ A /1999 μ A, 19.99mA/199.9mA, 1.999A/20.00A (万能表)。
- ◆ 1.999A/19.99A/199.9A, 1999A (钳形表)
- ◆ 电阻: 199.9Ω, 1.999kΩ, 19.99kΩ, 199.9kΩ, 1.999MΩ, 19.99MΩ。
- ◆ 电容: 20.00mF (30Sec))/600.0uF(2S:自动识别方式)。
- ◆ 频率: 9.999Hz, 99.99Hz, 999.9Hz, 9.999KHz, 99.99KHz, 999.9KHz, 9.999MHz。
- ◆ 二极管 : 0V ~1.999V, 2V 以上显示 OL。
- ◆ 通断检测: 低于 35 Ω 时发声, 200Ω 以上显示 0L。
- ◆ 三极管 hFE: 0 1999(hFE)。
- ◆ 温度测量: ℃/℉。
- ◆ NCV 测量: 0~4 级

4. 应用领域


- ◆ 自动量程数字万用表
- ◆ 手动量程数字万用表
- ◆ 钳形自动量程数字万用表

5. 电路原理框图

6. 管脚图

GC7910A LQFP48 封装管脚图

6. 管脚说明

管脚	名称	I/0	管脚描述		
1	VPP	0	通过 1uF 电容接地		
2	V+	Ι	电池正极接入端		
3	VSS	Ι	电池负极接入端		
4	AVDD	0	模拟电路组件电源		
5	ACM	0	基准电源输出端		
6	TX/HZ_O	0	串行数据输出/频率信号输出(用 SEL 键选择: default-》1KHz)		
7~11	A1 ∼A5	Ī	模拟信号输入及馈送端		
12	NC				
13	OS_SL	I	振荡器选择端 1:内部 RC 振荡器 0:外部晶体振荡器		
14	COM	PW	公共信号参考端		
15~18	P11~P14	Ι	按键功能选择输入端		
19~23	P20∼P24	Ι	测量旋转档位开关选择		
24	BZ	0	蜂鸣输出端		
25~26	XOUT~XIN	Ι	振荡晶体接入端		
27	TC	0	手电筒 LED 驱动端		
28	BL	0	LED 背光驱动端		
29~40	SEG11~SEG0	0	SEGO~SEG11 LCD 段驱动接入端		
41~44	COM3~COMO	0	COMO~COM3 LCD 背极驱动接入端		
45	RESET	Ι	芯片复位接入端		
46	VLCD	0	LCD 背压电容接入端		
47	CA	0	电荷泵电容接入端		
48	СВ	0	电荷泵电容接入端		

7. 电参数规格(VDD=3V, Ta=25℃)

符号	参数内容	测试条件	最小值	典型值	最大值	单 位
VDD	推荐工作电压		2.4	3.0	3.6	V
IDD	电源电流	DCV 模式		1.7	2.0	mA
IP0	休眠电流	自动关机状态			5	uA
VIH	输入高电平电压		VDD-0.5			V
VIL	输入低电平电压				0.5	V
Ipu	输入上拉电流	Vin=0		5	10	uA
VCOM	模拟地电压	相对于 VSS	1.6	1.7	1.8	V
AVDD	模拟端供电电压	相对于 VSS	3.6	3.9	4. 2	V
VACM	内部基准电压	ACM 相对 COM 之电压	1.1	1. 25	1.35	V
VBATT	电池欠电指示电压		2. 25	2. 4	2. 55	V
FLCD	LCD 显示场频			32		Hz
VLCD	VLCD 管脚电压	相对于 VSS		2*VDD		V
FBEEP	蜂鸣器驱动频率			2. 7		KHz
RCC	连通性检查电阻设定值	7)	10		60	Ω
	AD 转换测量溢出显示值			1999		
	自动量程向上跳档数字	Y		2000		
	自动量程向下跳档数字			160		
VFRED	频率计数器输入电平	VIL(对 COM)	-600			mV
		VIH(对 COM)			600	
FMAXD	频率计数器输入频率	Vpp=±600mV 方波输入	5M			Hz
	N'	2.000nF 档位			5%+50	
	在相对值测量状态下	20.00nF 档位			5%+10	
	电容测量精度	200.0nF 档位			3%+5	
		2.000 μ F 档位			3%+5	
		20.00 μ F 档位			3%+5	
		200.00 μ F 档位			3%+5	
		2.000mF 档位			3%+5	
		20.00mF 档位			3%+5	

8. 测量种类选择

P20 - P24 悬空为"1",接 VSS 为"0"

P20	P21	P22	P23	P24	功能	需连接的 JUMP	备注
1	1	1	1	1	Ohm/diode/cont	J4, J5	
1	1	1	1	0	Diode/cont	J4, J5	
1	1	1	0	1	Ohm	J4, J5	
1	1	1	0	0	Diode	J4, J5	
1	1	0	1	1	Cont	J4, J5	
1	1	0	1	0	DC/AC μA	J6, J8, J14	
1	1	0	0	1	DC/AC mA	J6, J9, J14	
1	1	0	0	0	DC/AC A	J6, J14	
1	0	1	1	1	Temp	Ј4	
1	0	1	1	0	DCV	J14	
1	0	1	0	1	ACV	J14	
1	0	1	0	0	DCV/ACV	J14	
1	0	0	1	1	Hz	J4, J12, J13	
1	0	0	1	0	HFE	Ј7	
1	0	0	0	1	NCV	J1, J3	
1	0	0	0	0	HZ_O	Ј10	
0	1	1	1	1	DCmV/ACmV	J4, J5, J14	
0	1	1	0	0	AC/DC 600V⊕	J14	输入信号放大 10000 倍
0	1	0	1	1	AC/DC 200V ⊕	J14	输入信号放大 1000 倍
0	1	0	1	0	AC/DC 20V⊕	J14	输入信号放大 100 倍
0	1	0	0	1	AC/DC 2V⊕	J14	输入信号放大 10 倍
0	1	1	1	0	AC 200A/2000A ②	J14	1mv RMS 对应 10A
0	1	0	0	0	AC 20A/200A ②	J14	1mv RMS 对应 1A
0	1	1	0	1	AC 2A/20A ②	J14	1mv RMS 对应 0.1A
0	0	1	_1	1	CAP	J4, J5	
0	0	1	1	0	ACV/Hz	J14	
0	0	1	0	1	Ohm/diode/cap/cont	J4, J5	
0	0	1	0	0	ACV/DCV 自动识别	J14	电压要大于 0.7V
0	0	0	1	1	ACA/DCA 自动识别	J6, J14	电流要大于 2.2A
0	0	0	1	0	ACmA/DCmA 自动识别	J9, J6, J14	电流要大于 25mA
0	0	0	0	1	ACμA/DCμA 自动识别	J8, J6, J14	电流要大于 250uA
0	0	0	0	0	DC20V	J14	用于电池电压测量

注: ①用于客户自己设计手动档万用表,从 A5 和 COM 之间输入信号

②钳形表应用,从 A5 和 COM 之间输入钳形表的信号

9. 按键定义

K1-SELECT/TORCH: 短按此键是 SELECT 功能,可作为 DC/AC,Ohm/Diode/ $^{\circ}$ C/ $^{\circ}$ F Beeper 功能切换。按此键长于 2 秒是手电筒开关功能。在 HZ_0 档位,按此按键可以切换输出频率(在 1KHz,500 Hz,250Hz,125Hz 之间循环)。

K2-RANGE: 自动 / 手动量程切换键,开机或转动拨盘时,预设为自动量程。短按切换为手动量程。在手动量程模式下,每按此键往上跳一档,到最高档后再按此键则跳至最低档,依次循环。如按 RANGE 键超过 2 秒或转盘切换,则退出手动量程状态。

K3-HOLD/BL:显示读数保持键,以触发方式动作。按此键时显示值被锁定,再按其它键 HOLD 功能被取消。按此键大于 2 秒,打开背光显示,再按此键 2 秒则关掉背光。背光显示大约 15 秒

K4-REL/TX: 相对值/串口控制键。按此键触发相对值测量,除 Hz/Duty、二极管、连通测试外都可做相对值测量。长按超过两秒, TX/HZ 0 端口输出串口信号

K5-HOLD:显示读数保持键,以触发方式动作,功能为保持显示读数。按此键时显示值被锁定, 一直保持不变,再按其它键 HOLD 功能被取消。

K6-BL: 长按此键打开背光显示,再长按则关掉背光。背光显示大约 15 秒/30 秒 (用户可选择, 校准时决定)

10. 其它功能

10.1 自动关机

在测量过程中,无论是按动功能键还是拨动拨盘开关,在 15 分内无动作时,仪表会"自动关机" (等待模式),以节约电源;要取消自动关机功能,只要开机时按着 Select 键开机,则自动关机功能被取消。在自动关机状态下,按动功能键或是拨盘开关,仪表会"自动开机"(工作模式)。

正常开机后,自动关机符号"**②**"同时显示,关机前**1** 分钟,蜂鸣器有连续**5** 声提示,关机前一 长声后即进入休眠(关机)状态。自动关机模式下旋转转盘或按动任何按键都可以重新开机。

10.2 背光控制

有背光驱动输出,以控制背光电路的开和关,当环境光线不足时提供清晰的读数,按K3或者K6 键超过约2秒时,背光驱动电路开启;再长按一次该键时,背光关闭。背光开启后若不按按键它会在 15 (30) 秒后自动熄灭。

10.4 低电压检测

低于2.4V时,显示电池符号。

10.5 量程及报警

当被测直流电压大于1010/610V、交流电压大于760/610V、交/直流微安电流 > 2000uA , 交/直流毫安电流 > 200.0mA, 交/直流大电流 > 10A时蜂鸣器都不停的发出"哔哔···"声音,以作警示。

10.7 NCV测量

- 0级:LCD显示LCD显示EF,蜂鸣器不出声
- 1 级: LCD 显示 -, BZ引脚输出约约每秒3次,每次维持100ms左右时间的2.7 KHz 频率的信号。
- 2 级: LCD 显示 -, BZ引脚输出约每秒3次,每次维持150ms左右时间的2.7 KHz 频率的信号。
- 3 级: LCD 显示 --- , BZ引脚输出约每秒3次,每次维持200ms左右时间的2.7 KHz 频率的信号。
- 4 级: LCD 还是显示---, BZ引脚输出约每秒3次, 每次维持250ms左右时间的 2.7 KHz频率的信号。

11. 校准流程方法

校正过程分为内部自检及功能档校准两个部分,必须先完成内部自检步骤才可做功能档校准。 过程需用到 K1/SELECT 及 K3/HOLD/BL 两个按键操作。

11.1 背光及自动关机时间选择

拨盘置于 HZ_OUT (10000) 档,按住 K3 键上电,等待全显后松开,如果出现"H"则短按 K3 键三次,如果没有出现"H",则短按 K3 键四次进入片内 RC 振荡校准模式和自动关机时间校准模式。

将 A5 (GC7910 的第 11 脚)和 HZ_0 (GC7910 的第 6 脚)短路,也就是闭合 J11,出现 $0^{\sim}32$ 的数字 (默认是 22),接 K1/SELECT 按键可以调整 HZ_0 引脚的输出频率,调整完成后,按 K3 键确认(出现"PAS"表明设置成功)。

再按 K1 键,可以调整自动关机时间,有 15 和 30 两个选项,计时单位是分钟,按 K1 键进行选择,按 K3 键确认。

再按 K1 键,可以调整背光时间,有 15 和 30 两个选项,计时单位是 S,按 K1 键进行选择,按 K3 键确认。关机退出此模式。默认背光时间是 15S,自动关机时间 15 分钟。没有需要可不用设置。

11.2 内部自检模式(自检没完成不会进入校正)

把拨盘置于能测电阻的档位(11111,11110,11101 或者 00101), J4 和 J5 闭合, 按住 K3/HOLD/BL

键上电,等待全显后松开,如果出现"H"则短按 K3 键三次,如果没有出现"H",则短按 K3 键**四**次进入内部自检模式(LCD 显示 "CAL"),自检完成会显示 "PAS"并蜂鸣。需注意进行自检时,表笔必须悬空,不可接任何信号。

11.3 100mV **直流电压校准** (必须首先校准,已校准则可按 SELECT、转拨盘或关机跳过):

在自检状态完成后,按 K1/SELECT 键会退出自检状态,此时 LCD 显示 mV 值(首次校准会有蜂鸣声),此时外部输入 100mV,待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 100mV 校准完成。(外部电路不需要改变,仍是电阻档状态)

11.4 100K Ω 电阻校准 (根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,LCD 显示电阻值(首次校准会有蜂鸣声),此时外部输入 $100K\Omega$,待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 $100K\Omega$ 校准完成。(外部电路不需要改变,仍是电阻档状态)

11.5 1MΩ 电阻校准 (根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,LCD 显示电阻值(首次校准会有蜂鸣声),此时外部输入 1MΩ, 待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 1MΩ校准完成。(外部电路不需要改变,仍是电阻档状态)

11.6 $10K\Omega$ 电阻校准 (根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,LCD 显示电阻值(首次校准会有蜂鸣声),此时外部输入 $10K\Omega$,待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 $10K\Omega$ 校准完成。(外部电路不需要改变,仍是电阻档状态)

11.7 1KΩ 电阻校准 (根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,LCD 显示电阻值(首次校准会有蜂鸣声),此时外部输入 1KΩ, 待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 1KΩ校准完成。(外部电路不需要改变,仍是电阻档状态)

11.8 100nF 电容校准 (根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,外部输入 100nF,待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 100nF 校准完成。(外部电路不需要改变,仍是电阻档状态)

11.9 10uF 电容校准(根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,外部输入 10uF,待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 10uF 校准完成。(外部电路不需要改变,仍是电阻档状态)

11. 10 100uF 电容校准(根据需要选择校准,可按 SELECT、转拨盘或关机跳过):

再按一次 K1/SELECT 键,外部输入 100uF,待显示值稳定后,按一次 K3 按键, LCD 显示 PAS 和 Beep 一声,表示 100uF 校准完成。(外部电路不需要改变,仍是电阻档状态)

11.11 环温校准(根据需要选择校准,可转拨盘或关机跳过):

再按一次 SELECT 键,LCD 显示 25℃。短按 SELECT 键环温会递增 1.0℃,长按 SELECT 键环温会递减 1.0℃。输入端不能悬空,要短接,出来负号的话不需要管,按一次 K3 按键,LCD 显示 PAS 和 Beep 一声,表示温度校准完成。(外部电路不需要改变,仍是电阻档状态)

11.12 大电流 1 A 直流校准

在校准模式下把拨盘置于 DCA(11000) 档, J6、J14 闭合, LCD 显示电流值, 然后表笔输入 1A 电流, 待显示值稳定后, 按 K3 键确认。LCD 显示 PAS 和 Beep 一声表示校准完成。

11.13 电流档 100 mA 直流校准 (根据需要选择校准,可转拨盘或关机跳过):

在校正模式把拨盘至 DCmA(11001) 档, J6、J9、J14 闭合, 然后表笔输入 100mA 电流, 待显示值稳定后, 按一次 K3 按键,显示 PAS 和 Beep 一声,表示电流校准完成。

11.14 电流档 100 uA 直流校准 (根据需要选择校准,可转拨盘或关机跳过):

在校正模式把拨盘至 DCuA (11010) 档, J6、J8、J14 闭合, 然后表笔输入 100uA 电流, 待显示值稳定后,按一次 K3 按键,显示 PAS 和 Beep 一声,表示电流校准完成。

11.15 电流档 1000 uA 交流校准 (根据需要选择校准,可转拨盘或关机跳过):

在校正模式把拨盘至 DCuA/ACuA (11010) 档, J6、J8、J14 闭合, 按 SELECT 按键切换到 AC, 然后表笔输入 1010uA 交流, 待显示值稳定后, 按一次 K3 按键,显示 PAS 和 Beep 一声,表示电流校准完成。

11.16 选 DCV 量程 (默认为 610V)

在校准模式把拨盘至 DCV (10110) 档, LCD 显示 DCV 量程, 按 SELECT 选 600V、1000V。按 K3 键确认,显示 PAS 和 Beep 一声,表示设置完成。注意选择 600V,交直流都是 610V 溢出;选择 1000V,直流 1010V 溢出,交流 760V 溢出。

11. 17 从 A5 输入的信号校准 (根据需要选择校准,可转拨盘或关机跳过)

在校准模式下把拨盘置于 AC/DC 200V 档 (01011),闭合 J14,LCD 显示电压值,然后输入相应电压值交流有效值 100V (对应 A5 和 COM 之间的电压值为交流 100mv 有效值),按 K3 键确认。LCD 显示 PAS 和 Beep 一声表示校准完成。其他从 A5 和 COM 输入的档位 AC/DC 2V (01001), AC/DC 20V (01010), AC/DC 600V (01100), AC2A/20A (01101), AC20A/200A (01000),AC200A/2000A (01110)

需要先长按 SELECT 键调零,然后输入相应电压或电流,电压档是 100mv 有效值校准,电流档是 10mv 有效值校准 (内部有 10 倍放大器),按 K3 键确认。LCD 显示 PAS 和 Beep 一声表示校准完成。以上只需要校准 1 个档位即可。

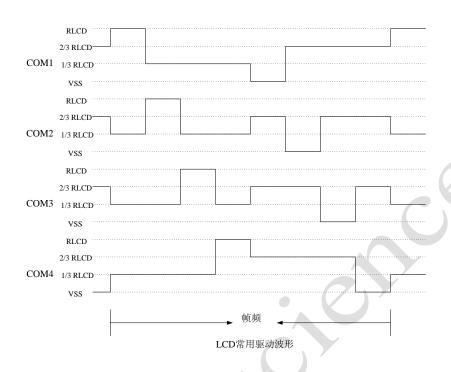
11.18 关机退出校准模式。

11.19 重新校正问题

芯片已经校准完毕,但是想重新校准某一单独项目的话,还是把拨盘置于电阻档(11101),按住 K3/H0LD/BL 键上电,等待全显完成后松开,如果出现"H"则短按 K3 键三次,如果没有出现"H",则短按 K3 键四次进入内部自检模式(LCD 显示 "CAL"),自检完成会显示 "PAS"并蜂鸣。需注意进行自检时,表笔必须悬空,不可接任何信号。然后再按 SELECT 按键,这时候可以通过转拨盘,按 SELECT 按键等选择要重新校准的项目即可。

12. 液晶显示

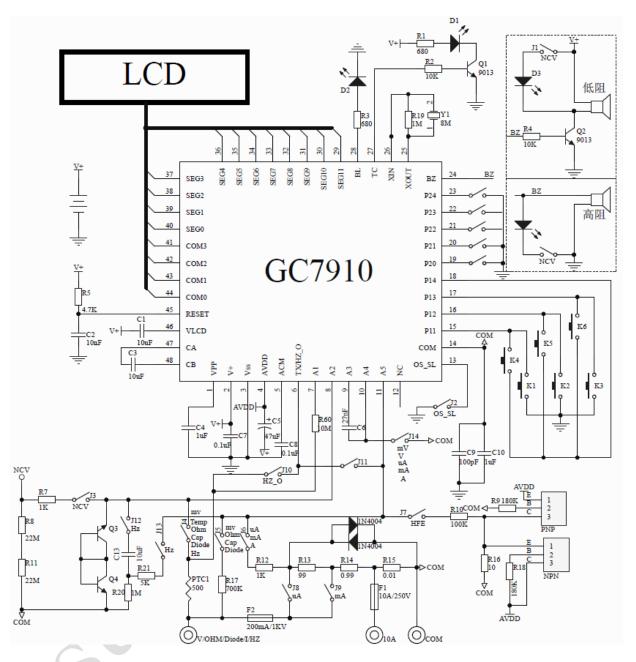
12.1 液晶显示示意图


12.2 液晶显示器真值表

PIN	SEG	COM3	COM2	COM1	сомо
1	/	/	/	/	C0
2	/	/	/	C1	/
3	/	/	C2	/	/
4	/	C3	/	/	/
5	SEG0	DC	AC	-	B4C4
6	SEG1	Auto	F3	E3	P3
7	SEG2	A3	G3	C3	D3
8	SEG3	-⊳	В3	E2	P2
9	SEG4	A2	F2	G2	D2
10	SEG5	• 1))	B2	C2	P1
11	SEG6	Hz	F1	E1	D1
12	SEG7	A1	G1	C1	m
13	SEG8	H	B1	Ü	μ
14	SEG9	Δ	K	°F	v
15	SEG10	hEF	M	n	A
16	SEG11	ū	Ω	હ	F

注: 1. 工作电压: 3V。 2. 驱动方法: 1/4 Duty, 1/3 Bias。

12.3 液晶显示器驱动波形



12. 4 GC7910A 液晶显示器符号说明

符 号	说明		
a	电池电压不足指示		
Auto	自动量程		
AC	交流电压或交流电流		
DC	直流电压或直流电流		
- /	直流电压/电流负极性指示		
-13+	二极管测量模式指示		
900	通断测量指示		
	数据保持模式		
Δ	相对值测量模式		
mV、V	电压单位		
μΑ、 mA、 A	电流单位		
Ω, kΩ, ΜΩ	电阻单位		
Hz、kHz、MHz	频率单位		
nF、μF、mF	电容单位		
hEF	三极管直流放大倍数		
°C F	摄氏/华氏温度符号		
હ	自动关机模式		

13. 应用电路图

14. 极限参数

参数	符号	最 小	最 大	单 位
电源电压	VDD	-0.3V	6.0	V
输入电流范围	IIN		+/-10	mA
输入电压范围	VIN	-0.3V	VDD +0.4	V
最大耗散功率	PT	500		mW
工作温度范围	Topr	-10	70	$^{\circ}\mathbb{C}$
贮存温度范围	Tstg	-40	125	$^{\circ}\!\mathbb{C}$

注意:超过此表范围的工作条件可能造成器件永久损坏。

15. 传输协议

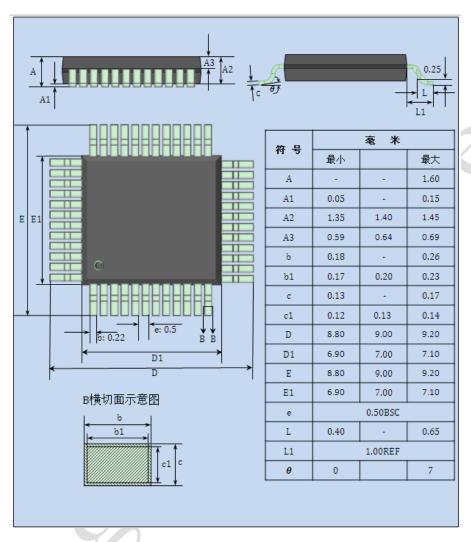
- 15.1 方向: 单向至计算机。
- 15.2 波特率: 2400 bps。
- 15.3 数据位: 8 bit。
- 15.4 停止位: 1 bit。
- 15.5 奇偶校验: 无。
- 15.6 数据制式: Hex。
- 15.7 数据长度: 14 Bytes。
- 15.8 数据资料: LCD 显示真值表 (见 12.2)。
- 15.9 数据格式:
- 1st byte \rightarrow 1X(X is seg1, 4 bits represent the data on the LCD table),

2nd byte \rightarrow 2X(X is seg2, 4 bits represent the data on the LCD table),

3rd byte \rightarrow 3X(X is seg3,4 bits represent the data on the LCD table),

等等。

 $1X \rightarrow 4$ bit, $2X \rightarrow 4$ bit, $3X \rightarrow 4$ bit,


.....

EXH→4 bit。

15.10 X 表示: Bit3~Bit0→segn (COM3-COM0)。

15. LQFP48 封装信息

16. 订货信息

产品型号	供货方式
GC7910A	LQFP48 封装片;每盘 250; 每箱 10 盘。
	裸片