

3-3/4 位显示自动换挡数字多用表芯片

概述

GC7721_LP1 是一款高性能、低功耗、3-3/4 位 (3999 Counts) LCD 显示的单芯片自动换挡数字 多用表专用电路。芯片内部包含有低功耗 8 位微处理器和模数转换器。另外还集成了低噪声 CMOS 运算放大器,交流同步整流电路,电荷泵及稳压电路,高稳定带隙基准源,自动量程转换及功能控制电路,蜂鸣器驱动电路,时钟振荡电路,液晶显示驱动电路和背光显示控制电路。

由于 GC7721_LP1 带有微处理器,通过输入/输出口(I/0)可以进行逻辑功能控制,用 MEA1-MEA4 脚的编码,就可以进行各种测量功能的组合;通过编码设置,可以构成全自动量程测量仪表,也可以构成全手动量程测量仪表。设置 RANGE, SELECT, HOLD/BLCTR, REL, HZ/DUTY, RESET 按键,可以通过触发这些按键实现量程选择,功能切换,读数保持,背光显示,相对值、频率和占空比测量,数据传输和复位等功能。

GC7721_LP1 还有自动关机功能,当仪表旋钮和按键在 15 分钟内均无动作时,它会进入休眠状态,以节省电能。仪表使用过程中若不需要自动关机时,也可以在应用时取消该功能。

GC7721_LP1 是真正多功能带微处理器的测量模/数变换器,以亚微米工艺技术制造,极大地提高了产品的可靠性,使设计简单,体积小;工作电压低,功耗小,便于使用电池供电,特别适用于掌上型仪表。只要加上少量外部之元器件就可以构成一台精度高、功能多、成本低的手持测量仪表。

1、特点

- ◆ 最大显示: 3999。
- ◆ 转换速率: 3次/秒。
- ◆ 极性指示: 自动。
- ◆ 电源电压范围: 2.4V-3.6V。
- ◆ 芯片功率消耗: ≤ 5mW
- ◆ 低电压指示: 约为 2.4 V。
- ◆ 有蜂鸣器驱动电路(频率约为 2.7kHz)。
- ◆ 内置交流整流运算放大器。
- ◆ 功能按键: RANGE, SELECT, HOLD、BLCTR, REL, HZ/DUTY, RESET
- ◆ 有单位符号和背光显示。
- ◆ 有自动关机功能(15分钟)。

2、可测量参数

- ◆ 直流电压: 400.0mV, 4.000V, 40.00V, 400.0V, 1000V。
- ◆ 交流电压: 400.0mV, 4.000V, 40.00V, 400.0V, 1000V。
- ◆ 直流电流: 400.0μA /4000μA, 40.00mA/400.0mA, 10.00A。
- ◆ 交流电流: 400.0μA/4000μA, 40.00mA/400.0mA, 10.00A。
- ♦ 电阻: $400.0 \,\Omega$, $4.000 \,k \,\Omega$, $40.00 \,k \,\Omega$, $400.0 \,k \,\Omega$, $4.000 \,M \,\Omega$, $40.00 \,M \,\Omega$.
- ◆ 电容: 5.120nF, 51.20nF, 512.0nF, 5.120μF, 51.20μF, 200.0μF(30Sec)。
- ◆ 频率: 9.999Hz, 99.99Hz, 999.9Hz, 9.999KHz, 99.99KHz, 999.9KHz, 9.999MHz。
- ◆ 占空比: 0.1%~99.9%。
- ◆ 二极管: 0V ~ 1.5 V。
- ◆ 通断检测:低于50Ω时发声。
- ◆ 三极管 hFE: 0 4000。
- ◆ 温度测量: 摄氏温度测量。

3、应用领域

- ◆ 自动量程掌上型数字多用电表。
- ◆ 自动量程卡片型数字多用电表。
- ◆ 自动量程笔式数字型电表。
- ◆ 自动量程钳型表〔钩表、Clamp Meter)。
- ◆ 数字面板表。

4、电路原理框图

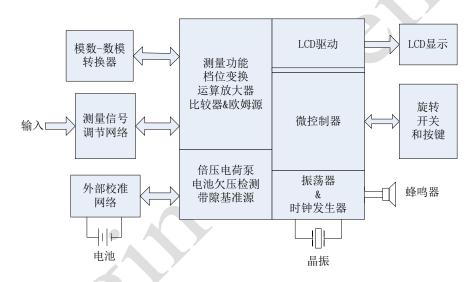


图 1 电路原理框图

5、管脚示意图

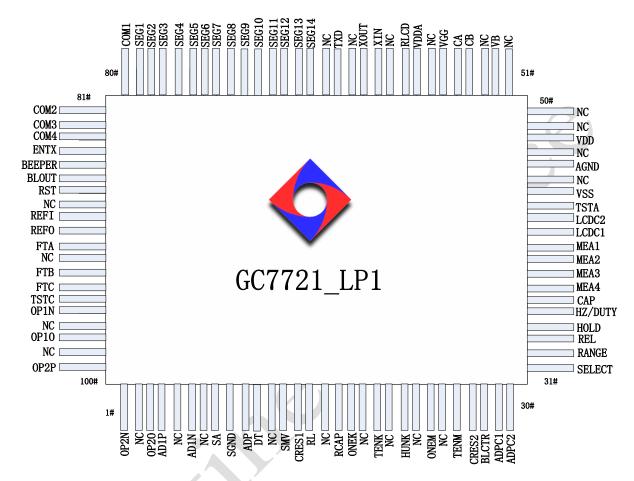


图 2 QFP100 脚封装外形图

6、GC7721_LP1 管脚功能说明

100 脚封装片	裸片序号	符号	I/0	描述
1	1	OP2N	I	交/直流转换运算放大器反向输入端
2		NC		空脚
3	2	0P20	0	交/直流转换运算放大器输出端
4	3	AD1P	Ι	交流测量ADC 正输入端
5		NC		空脚
6	4	AD1N	Ι	交流测量ADC 负输入端
7		NC		空脚
8	5	SA	Ι	电流测量ADC 输入端
9	6	SGND	Ι	模拟接地ADC 负输入端
10	7	ADP	Ι	额外ADC 输入正端
11	8	DT	I/0	二极管测量分压电阻连接点
12		NC		空脚
13	9	SMV	Ι	高阻电压输入端/电阻/二极管测量分压电阻连接
10	9	SMV	1	点
14	10	CRES1	I/0	电阻测量待测点的滤波电容连接点
15	11	RL	I	电阻测量参考电压负输入端
16	12	NC		空脚
17	13	RCAP	1/0	电容测量校准电阻连接点
18	14	ONEK	I/0	1kΩ电阻连接点
19		NC		空脚
20	15	TENK	I/0	10kΩ电阻连接点
21		NC		空脚
22	16	HUNK	I/0	101.010kΩ电阻连接点
23		NC		空脚
24	17	ONEM	I/0	1.111MΩ电阻连接点
25		NC		空脚
26	18	TENM	I/0	10MΩ电阻连接点
27	19	CRES2	I/0	电压、电阻测量稳压电压源电容连接点
28	20	BLCTR	Ι	背光控制端
29	21	ADPC1	I	电流测量模式选择(见 13.13 电流测量和11.4 说明)
30	22	ADPC2	Ι	测量信号直流/交流选择(见 11.4 说明)

GC7721_LP1

31	23	SELECT	I	测量功能选择
32	24	RANGE	I	自动/手动量程选择
33	25	REL	I	相对值测量
34	26	HOLD	I	显示读数保持
35	27	HZ/DUTY	I	频率/占空比测量选择
36	28	CAP	I	电容测量功能选择
37	29	MEA4	Ι	测量功能选择
38	30	MEA3	Ι	测量功能选择
39	31	MEA2	I	测量功能选择
40	32	MEA1	I	测量功能选择
41	33	LCDC1	Ι	自动测量不用,手动测量(见 9.2 说明)
42	34	LCDC2	I	未使用
43	35	TSTA	Ι	测试端口
44	36	VSS	Ι	电源输入负端
45		NC		空脚
46	37	AGND	I	模拟信号接地点
47		NC		空脚
48	38	VDD	I	电源输入正端
49		NC		空脚
50		NC		空脚
51		NC NC		空脚
52	39	VB	I	偏置电压输入端
53		NC		空脚
54	40	СВ	I/0	倍压电容负端连接点
55	41	CA	I/0	倍压电容正端连接点
56	42	VGG	0	倍压电路输出端
57	N/	NC		空脚
58	43	VDDA	0	稳压电源输出/模拟电路电源
59	44	RLCD	Ι	LCD 驱动电压调整电阻连接点
60		NC		空脚
61	45	XIN	Ι	振荡晶体连接点
62	46	XOUT	0	振荡晶体连接点
63		NC		空脚
64	47	TXD	0	PWR 控制 (见 9.2 备注 4)
65		NC		空脚
66~79	48~61	SEG14~	0	笔段14~笔段1

GC7721_LP1

		SEG1		
80~83	62~65	COM1~COM4	0	公共背极1~公共背极4
84	66	ENTX	Ι	未使用
85	67	BEEPER	0	蜂鸣器驱动输出端
86	68	BLOUT	0	背光驱动输出端
87	69	RST	Ι	CPU 复位
88		NC		空脚
89	70	REFI	Ι	ADC 参考电压输入端
90	71	REFO	0	带隙基准电源(Bandgap)输出端
91	72	FTA	0	ADC 前置滤波器正输出端
92		NC		空脚
93	73	FTB	Ι	ADC 前置滤波器正输入端
94	74	FTC	I/0	ADC 前置滤波器负端
95	75	TSTC	Ι	测试用
96	76	OP1N	Ι	交流信号缓冲运算放大器反向输入端
97		NC		空脚
98	77	OP10	0	交流信号缓冲运算放大器输出端
99		NC		空脚
100	78	OP2P	I	交/直流转换运算放大器同向输入端

7、裸片 PAD 图和 PAD 坐标

7.1 裸片 PAD 图

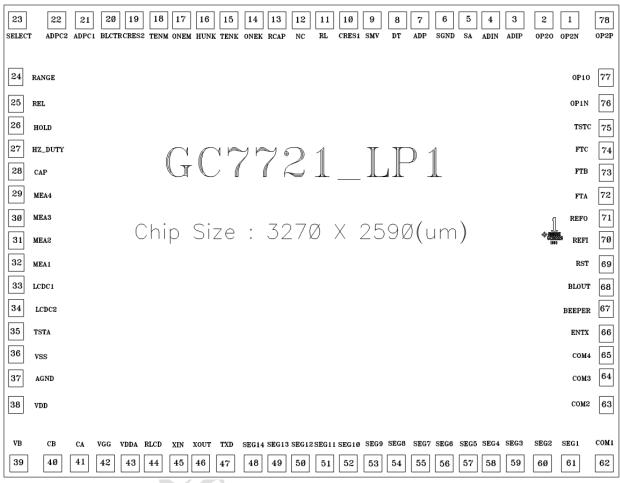


图 3 裸片引出脚

脚距: 90 μm;

芯片尺寸: 3.27mm×2.59mm。 注意:使用时,裸片衬底应与电源负极(VSS)相连接。

7.2 芯片压焊点坐标

Pad No.	Name	X[mm]	Y[mm]	PadNo.	Name	X[mm]	Y[mm]
1	OP2N	0.264	0.077	40	СВ	2.974	2.495
2	OP2O	0.404	0.077	41	CA	2.834	2.495
3	ADIP	0.544	0.077	42	VGG	2.694	2.495
4	ADIN	0.669	0.077	43	VDDA	2.569	2.495
5	SA	0.794	0.077	44	RLCD	2.444	2.495
6	SGND	0.919	0.077	45	XIN	2.319	2.495
7	ADP	1.044	0.077	46	XOUT	2.194	2.495
8	DT	1.169	0.077	47	TXD	2.069	2.495
9	SMV	1.294	0.077	48	SEG14	1.923	2.495
10	CRES1	1.419	0.077	49	SEG13	1.798	2.495
11	RL	1.544	0.077	50	SEG12	1.673	2.495
12	NC	1.669	0.077	51	SEG11	1.548	2.495
13	RCAP	1.794	0.077	52	SEG10	1.423	2.495
14	ONEK	1.919	0.077	53	SEG9	1.298	2.495
15	TENK	2.044	0.077	54	SEG8	1.173	2.495
16	HUNK	2.169	0.077	55	SEG7	1.048	2.495z
17	ONEM	2.294	0.077	56	SEG6	0.923	2.495
18	TENM	2.419	0.077	57	SEG5	0.798	2.495
19	CRES2	2.544	0.077	58	SEG4	0.673	2.495
20	BLCTR	2.669	0.077	59	SEG3	0.548	2.495
21	ADPC1	2.809	0.077	60	SEG2	0.408	2.495
22	ADPC2	2.949	0.077	61	SEG1	0.268	2.495
23	SELECT	3.147	0.077	62	COM1	0.091	2.495
24	RANGE	3.157	0.396	63	COM2	0.077	2.176
25	REL	3.157	0.536	64	COM3	0.077	2.036

GC7721_LP1

26	HOLD	3.157	0.661	65	COM4	0.077	1.911
27	Hz/DUTY	3.157 0.786		66	ENTX	0.077	1.786
28	CAP	3.157	0.911	67	BEEPER	0.077	1.661
29	MEA4	3.157	1.036	68	BLOUT	0.077	1.536
30	MEA3	3.157	1.161	69	RST	0.077	1.411
31	MEA2	3.157	1.286	70	REFI	0.077	1.286
32	MEA1	3.157	1.411	71	REFO	0.077	1.161
33	LCDC1	3.157	1.536	72	FTA	0.077	1.036
34	LCDC2	3.157	1.661	73	FTB	0.077	0.911
35	TSTA	3.157	1.786	74	FTC	0.077	0.786
36	VSS	3.157	1.911	75	TSTC	0.077	0.661
37	AGND	3.157	2.036	76	OP1N	0.077	0.536
38	VDD	3.157	2.176	77	OP1O	0.077	0.396
39	VB	3.148	2.495	78	OP2P	0.083	0.077

8、技术规格(VDD=3V,Ta=25℃)

符号	参 数	测试条件	最小	典型	最大	单位
VDD	推荐工作电压		2.4	3.0	3.6	V
IDD	工作电流	在 DCV 模式		1.5	2	mA
IPO	休眠电流	在自动关机状态			10	μА
VIH	数字高电平		VDD-0.5			V
VIL	数字低电平				0.5	V
AGND	模拟地		VDD/2 -3%	VDD/2	VDD/2 +3%	V
VDDA	模拟电源		3.4	3.7	4.0	V
VBAND	内置带隙电源	相对 AGND	1.1	1.25	1.4	V
	带隙电源随电源电压波动 系数	VDD=2.4~3.6	-2		2	mV/V
REFI	推荐使用基准电压	相对 AGND		0.4		V
VBATT	低电压监测	7	2.25	2.4	2.55	V
FLCD	液晶显示基频			32		Hz
VLCD	液晶显示峰对峰驱动电压		2.8	3	3.2	V
FBEEP	蜂鸣器频率			2.7		kHz
	"0"输入读数	DC ADPxl,输入=0V	-0.001	0.000	0.001	digits
	线性 (线性最大偏差)	DC ADPxl,输入满量 程±400.0mV	-1	0	+1	digits
	交流测量带宽误差	AC ADPxl 输入 240mVrms20Hz~1kHz			0.2	%
Rcc	通断检测值		10		60	Ohm
	ADC 测量溢出数			4050		counts
	自动量程向上跳档数位			4000		counts
	自动量程向下跳档数位			360		counts
VFREA	频率计数电平	VIL(对 AGND)	-60			mV
VFKEA	(Hz/Duty 控制)	VIH(对 AGND)			60	mV
FMAXA	最大输入频率 (Hz/Duty 控制)	Vpp=±100mV 方波 输入	500k			Hz

GC7721_LP1

*1	占空比测量误差 (Hz/Duty 控制)	Vpp=±100mV 方波 输入		1	μs
WEDED	频率计数器输入电平	VIL(对 AGND)	-600		mV
VFRED	(MEAS=0101)	VIH(对 AGND)		600	mV
FMAXD	频率计数器输入频率 (MEAS=0101)	Vpp=±600mV 方波 输入	5M		Hz
*1	占空比测量误差 (MEAS=0101)	Vpp=±600mV 方波 输入		100	ns
		5.120nF 档位		5%+25	digits
	在相对值测量状态下电容	51.20 nF 档位		2%+10	digits
	测量精度 (以 400.0nF 档	512.0 nF 档位		0.5%+3	digits
	位标准调整)	5.120 μ F 档位	• (1%+2	digits
		51.20 μF 档位		1.5%+2	digits

*1 Duty Cycle 测量方波时,其测量误差主要来自比较器本身可解析的脉冲宽度误差。例如:测量 100kHz 方波信号时,可将方波信号分成 1000 等份 (1000Counts),每一等份为 10 ns,所以在 Duty Cycle 测量时 最大误差为 (100ns /10ns) =10Counts,输出 50.0%信号可能量到 50.0% ±1.0%,大于 99%或小于 1%的信号,可能无法测量到,将显示 0.00%。

9、测量种类选择

9.1 测量种类选择 (MEA1 ~ MEA4 悬空为 "1",接 VSS 为 "0" ⑤)

MEA4	MEA3	MEA2	MEA1	测量功能SELECT键 功能切换	HZ/DUTY 键切换	REL	HOLD	RANGE	SELECT	Jump(1)
0	0	0	1	DCV	V/Hz/Duty	•	•	•		J5
0	0	1	0	ACV ②	V/Hz/Duty	•	•	• (J5
0	1	0	0	Hz/Duty	Hz/Duty					Ј7, Ј9
0	1	1	1	DC μ A/AC μ A开关	μA/ Hz/Duty	•	•	•	•	J3, J11
1	0	0	0	ACV/DCV开关②	V/Hz/Duty	•		•	•	J5
1	0	1	0	DCA/ACA开关	A/Hz/Duty		•	•	•	Ј3
1	0	1	1	DcmA/ACmA开关	mA/Hz/Duty		•	•	•	J3, J10
0	1	0	1	Cap		•	•	•		J4, J6
0	1	1	0	Diode continuity开关)				•	J4, J6
1	0	0	1	Ω/Diode/Cont./CAp开 关		•	Ohm •	•	•	J4, J6
0	0	1	1	欧姆		•	•	•		J4, J6
1	1	0	0	二极管						J4, J6
1	1	0	1	连通性						J4, J6
1	1	1	0	hFE3		•		•		Ј8
1	1	1	1/	Temp4		•		•		J1, J2

注:

- ①Jump 栏中 JX 表示在图 6 和图 7 通用线路总图上该测量功能的 JX 是接通的。
- ②在 Auto 模式下, ACV 档位按 RANGE 键才能选择到 ACmV 量程。
- ③来自 ADP 的输入,满量程范围是 400mV,没有小数点。
- ④来自 TSTC 的输入,运算放大器的放大倍数设定在 2.5 倍左右。
- ⑤在自动测量模式, CAP、LCDC1、LCDC2 悬空。

9.2 手动测量模式选择 (MEA1~MEA4, CAP 悬空为 "1", 接 VSS 为 "0")

CAP	MEA4	MEA3	MEA2	MEA1	功能	Jumper	Select	Rel	Hz/Duty	Hold
0	0	0	0	1	400.0mV	J5	DC/AC	•	•	•
0	0	0	1	0	4.000V	J5	DC/AC	•	•	•
0	0	0	1	1	40.00V	J5	DC/AC	•	•	•
0	0	1	0	0	400.0V	J5	DC/AC	•	•()•
0	0	1	0	1	1000V	J5	DC/AC	•	•)	•
0	0	1	1	1	Beeper	J4, J6			/	
0	1	0	0	1	400.0 Ω	J4, J6	0	•		•
0	1	0	1	0	4.000k Ω	J4, J6	A	•		•
0	1	0	1	1	40.00k Ω	J4, J6		•		•
0	1	1	0	0	400.0k Ω	J4, J6		•		•
0	1	1	0	1	4.000M Ω	J4, J6		•		•
0	1	1	1	0	40.00M Ω	J4, J6		•		•
0	1	1	1	1	Diode	J4, J6				
1	0	0	0	1	4.000nF	J4, J6		•		•
1	0	0	1	0	40.00nF	J4, J6		•		•
1	0	0	1	1	400.0nF	J4, J6		•		•
1	0	1	0	0	4.000 µ F	J4, J6		•		•
1	0	1	0	1	40.00 μ F	J4, J6		•		•
1	0	I	1	0	200.0 µ F	J4, J6		•		•
1	0	1	1	1	hFE	Ј8				•
1	1	0	0	0	10.00A	J3	DC/AC	•	•	•
1	1	0	0	1	400.0mA	J3, J10	DC/AC	•	•	•
1	1	0	1	0	40.00mA	J3, J10	DC/AC	•	•	•
1	1	0	1	1	4000 µ A	J3, J11	DC/AC	•	•	•
1	1	1	0	0	400.0 μ A	J3, J11	DC/AC	•	•	•

GC7721_LP1

1	1	1	0	1	Duty	J7, J9		•	•
1	1	1	1	0	Hz	J7, J9		•	•
1	1	1	1	1	°C	J1, J2	•		•

备注:

- 1. 以下的管脚编号与裸片管脚编号对应。
- 2. 表中的"JX"表示短接线的通配连接号。
- 3.LCDC1 (pin33) 接 VSS。
- 4. PWR CTR: TXD (pin47) 电源开启为 "1", 电源关断为 "0", 提供了由外部电路控制电源的方式。
- 5. 直接从 ADP 端输入的 400mV 可提供更佳的测量性能。
- 6. 测量 hFE 的方法是通过 ADP 和 AGND 之间输入 400. 0mV。
- 7. 温度测量和输入 TSTC (pin75) 和 AGND 之间电压对应关系是: 40 μ V/℃。
- 8. 手动测量与自动测量的区别:
 - (1) CAP (pin28) 和 MEA4~MEA1 一起用来做选择。
 - (2) LCDC1 (pin33) 接 VSS
 - (3) mV 单独模式从 ADP 端口输入

按键控制管脚: HOLD: pin26; Rel: pin25; Select: pin23; Back Light: pin20; Back light Output: pin68。

10、按键定义

10.1 Range (自动/手动量程切换)

Range 为自动/手动量程选择键,以触发方式动作。开机时预设为自动量程,按一下即切换为手动量程。在手动量程模式下每按一下往上跳一档,到最高档后继续再按此键则跳至最低档,依次循环。如按此键超过2秒则切换回自动量程状态。频率及占空比测量不能用手动测量。

10.2 Hold(显示读数保持)

Hold 键为读数保持,以按键触发方式启动,功能为保持当前显示读数不变。按此键时显示值被锁定,一直保持不变,再按此键时,锁定状态被解除,进入正常测量状况。

10.3 REL(相对值测量)

REL 键为相对值测量键,以按键触发方式动作,除 Hz/Duty、二极管、连通性功能外都可做相对值测量。

10.4 BLCTR (背光控制)

BLCTR 键为背光控制键,以触动方式动作,当按 BLCTR 键超过约 2 秒时背光会开启;再按一次 BLCTR 键超过 2 秒时,背光会关闭。

10.5 SELECT (功能切换)

SELECT 为功能选择键,以按键触发方式动作。用 SELECT 键选择相应的功能进行测量。

10.6 HZ/DUTY(频率/占空比)

HZ/DUTY 为频率/占空比选择键,以按键触发方式动作。在频率测量档位,按该键可以选择频率或占空比测量模式;在交/直流电压或交/直流电流档位,按该键可以进行电压/频率/占空比或电流/频率/占空比测量模式选择。

10.7 RESET (复位键)

RESET 键为复位键,以触动方式动作。按该键使微处理器复位。

11、其它功能

11.1 自动关机

在测量过程中,功能按键和档位开关在 15 分钟内均无动作时,仪表会"自动关机"(等待模式),以节约电源;在自动关机状态下,按动功能键或是拨盘开关,仪表会"自动开机"(工作模式)。

在开机时按 Select 键并保持住按住,则自动关机功能被取消。

11.2 蜂鸣器

按任何按键或转动功能开关时,蜂鸣器会发一声(约 0. 25 秒~1 秒);通断检测时,当连接电阻小于 50 欧姆时,蜂鸣器发声。在测量交流电压>750V,直流电压>1000V,交/直流微安电流 >4000uA ,交/直流毫安电流>400. 0mA,交/直流大电流>10A 时,蜂鸣器发声,作为超量程警示。自动关机前约 1 分钟蜂鸣器会连续发出 5 声警示。关机前蜂鸣器会以1 长声警示。

11.3 背光控制

有背光驱动输出,控制背光电路的开和关,以便在环境光线不足时为读数提供方便。按BLCTR 键超过约 2 秒时,背光驱动电路开启;再按一次该键时,背光关闭。背光开启后若不按该键它会在 15 秒后自动熄灭。

11.4 ADPC1/ADPC2 功能

ADPC	作用	状态	描述
ADPC1	选择电流测量模式	悬空 (1)	μA/mA/A 取样电阻为 1kΩ/10Ω/0.01Ω
ADPCI	边往电视测 重恢入	接VSS(0)	μA/mA/A 取样电阻为 100Ω/1Ω/0.01Ω
ADPC2	选择交/直流状态	悬空(1)	直流状态
ADPC2	处14义/ 且侧扒心	接 VSS(0)	交流状态

12、液晶显示器

12.1 液晶显示器示意图

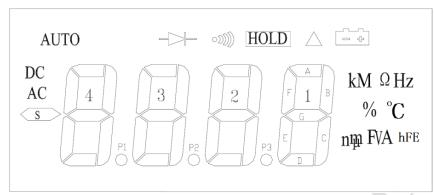
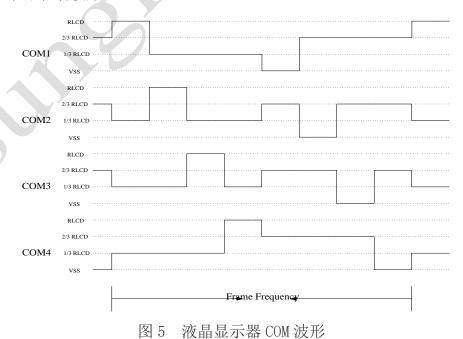


图 4 液晶显示器结构


12.2 液晶显示器真值表

PIN	1	5	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
COM	CDM4	CDM3	COM2	COM1	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14
CDM1				CDM1		A4	B4	A3	<i>B3</i>	A2	B2	A1	B1	+	0))))	HOLD	- ¢	-
CDM2			COM2		AUT0	F4	G4	F3	G3	F2	G2	F1	G1	k	M	Δ	Hz	hFE
CDM3		CDM3			DC	E4	C4	E3	<i>C3</i>	E2	<i>C2</i>	E1	C1	n	%	Ω	V	°C
CDM4	CDM4				AC	<u>(S)</u>	D4	P1	D 3	P2	D2	<i>P</i> 3	D1	Ш	m	F	A	

注: 1. 工作电压: 3V;

2. 驱动方法: 1/4 Duty, 1/3 Bias。

12.3 液晶显示器驱动波形

13、应用说明

13.1.1 通用电路图

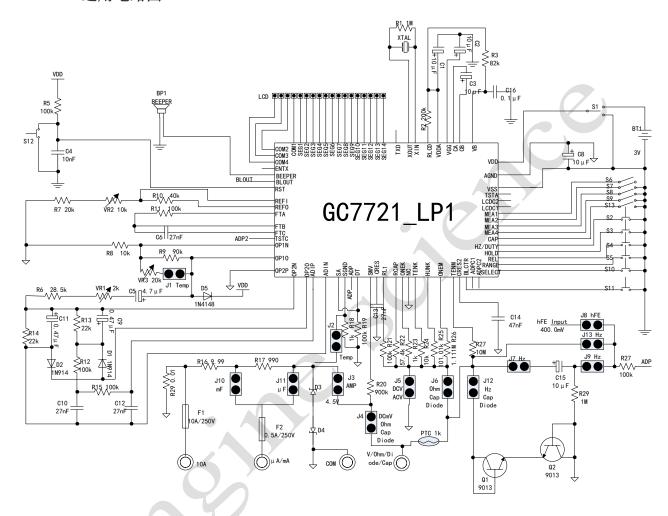


图 6 100 脚 QFP 封装应用电路示意图

VSS: = 电池负端和集成电路负电源输入

VDD: T 电池正端和集成电路正电源输入

VGG: VDD 电荷泵,约为2倍的VDD大小

VDDA: 集成电路模拟电源,约为3.9V

13.1.2 GC7721 LP1 裸片应用示意图

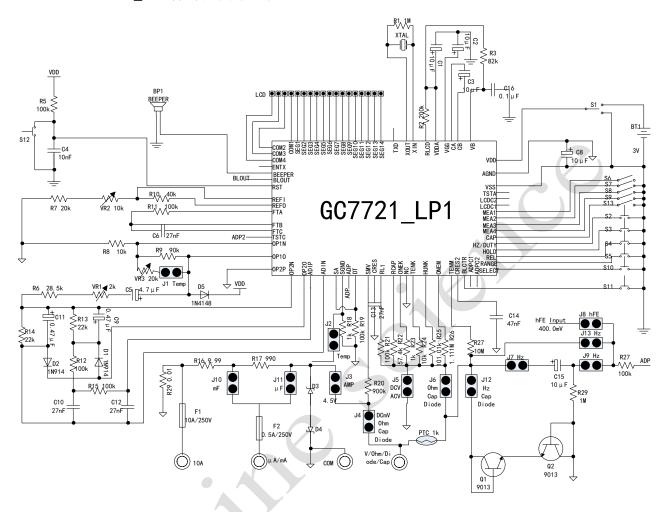


图 7 裸片应用电路示意图

VSS: ╧ 电池负端和集成电路负电源输入

VDD: T 电池正端和集成电路正电源输入

VGG: VDD 电荷泵,约为2倍的VDD大小

VDDA: 集成电路模拟电源,约为3.9V

13.2 技术描述和元件关系

	网络	电流模式/10 (R20:R19=9:1) ADPC1 悬空	交流测量 (R6+VR1,	电压参考(R10, R7, VR2)
		ADI CI 恋土	R13=R14)	
DC	R27	否	否	是
DC 4V	R26/(R27+R26)=1/10	否	否	是
DC 40V	R25/(R27+R25)=1/100	否	否	是
DC 400V	R24/(R27+R24)=1/1000	否	否	是
DC 1000V	R23/(R27+R23)=1/10000	否	否	是
AC 400mV	R26/(R27+R26)=1/10(R9:R8=9:1)	否	是	是
AC 4V	R26/(R27+R26)=1/10	否	是	是
AC 40V	R25/(R27+R25)=1/100	否	是	是
AC 400V	R24/(R27+R24)=1/1000	否	是	是
AC 1000V	R23/(R27+R23)=1/10000	否	是	是
R 400Ω	R27//R23=1k Ω	否	否	否
R 4kΩ	R27//R23=1k Ω	否	否	否
R 40kΩ	R27//R24=10k Ω	否	否	否
R 400kΩ	R27//R25=100k Ω	否	否	否
R 4MΩ	R27//R26=1M Ω	否	否	否
R 40ΜΩ	R27=10M	否	否	否
DC400µA	$R17+R16+R29=1k\Omega(100\Omega)$	否	否	是
DC4000µA	$R17+R16+R29=1k\Omega(100\Omega)$	是	否	是
DC 40mA	R16+R29=10Ω(1Ω)	否	否	是
DC 400mA	R16+R29=10Ω(1Ω)	是	否	是
DC 10A	R29=0.01Ω	否	否	是
ΑC400μΑ	$R17+R16+R29=1k\Omega(100\Omega)$	否	是	是
ΑC4000μΑ	$R17+R16+R29=1k\Omega(100\Omega)$	是	是	是
AC 40mA	R16+R29=10Ω(1Ω)	否	是	是
AC 400mA	R16+R29=10Ω(1Ω)	是	是	是
AC 10A	R29=0.01Ω	否	是	是
CAP	R22	否	否	否
Diode		否	否	是

13.3 通用电路总图元件表

代号	规格	代号	规格	代号	规格	代号	规格	代号	规格
R1	1ΜΩ	R15	100kΩ	R28	1ΜΩ	C11	0.47nF	IC	GC7721_LP1
R2	200kΩ	R16	9.99Ω	R29	0.01Ω	C12	27nF	BT1	1.5V*2
R3	82kΩ	R17	990Ω	R30	100kΩ	C13	27nF	BP1	Buzzer
R5	100kΩ	R18	1kΩ	C1	10μF	C14	47nF	PTC	1kΩ
R6	28.5kΩ	R19	100kΩ	C2	10μF	C15	10μF		
R7	20kΩ	R20	900kΩ	C3	10μF	C16	0.1μF		
R8	10kΩ	R21	100kΩ	C4	10nF	D1	1N914		
R9	90kΩ	R22	57.4kΩ	C5	4.7μF	D2	1N914		
R10	40kΩ	R23	1.001kΩ	C6	27nF	VR1	$2 \mathrm{k} \Omega$		
R11	100kΩ	R24	10.010kΩ	C7	10μF	VR2	10kΩ		
R12	100kΩ	R25	101.010kΩ	C8	10μF	VR3	20K		
R13	22kΩ	R26	1.111ΜΩ	С9	0.47nF	LCD	LCD		
R14	22kΩ	R27	10.000ΜΩ	C10	27nF	XTAL	4MHz		

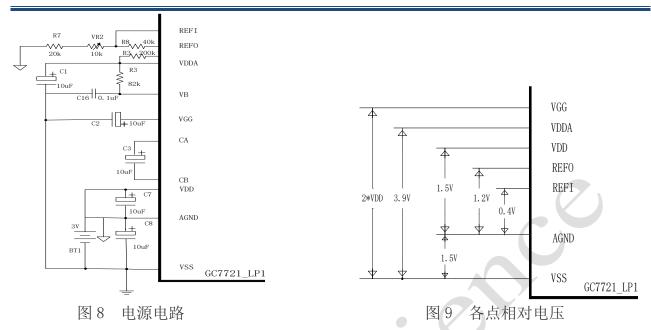
注:在电路总图及元件表中的电阻、电容等元件的精度,功率,耐压等技术指标未标出,用户在产品设计中要根据自己的实际需要而定。

13.4 电源系统

VB为IC内部偏置电流输入点,R3的增加会减小IC内部电流的消耗,但偏置电流不够会影响交流测量的输入范围。

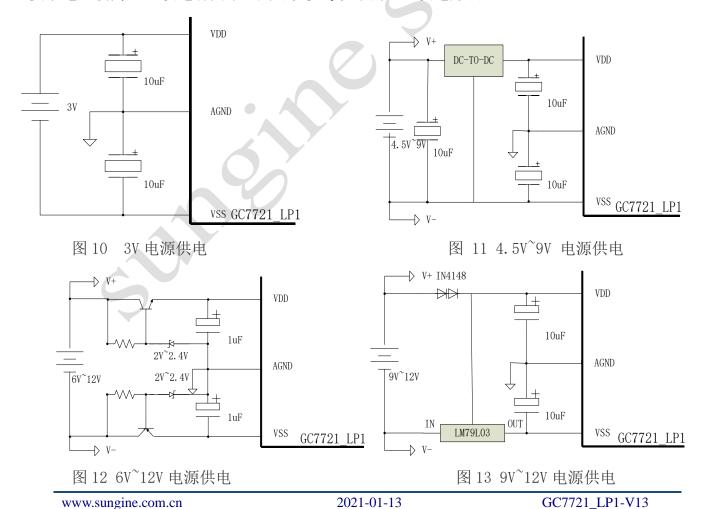
AGND 是模拟接地点,其电位相当于电池电压的中点。该点电位是由 IC 内部产生的,不可与电池的中点相连。

C7 和 C8 一方面作旁路电容,另一方面可使 AGND 对 VDD 和 VSS 稳定。 C3 是电源泵电容,IC 将 VDD 电压通过 C3 充放电使 VGG 提高到约为 VDD 电压的 2 倍。


VDDA 是 IC 内部将 VGG 经稳压后输出的电压,相对于 VSS 约为 3.9V。

REFO 为 IC 内部的带隙基准电源,相对于 AGND 约为 1.2V,有 100ppm/℃的稳定度。

电源系统中 IC 各脚的电压降如图 9 所示



13.5 供电电路

用户的不同应用,供电的方式也不同,当在某些测量时,所用运算放大器,霍尔组件等传感器要求电压较高,3V供电有困难,则可以参考以下的一些供电方法:

13.6 基准电源

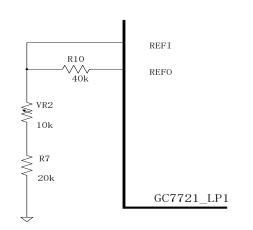


图 14 利用内部基准电源

VGG 20k ICL8069A REFI GC7721_LP1

图 15 利用外部基准电源

13.7 触发式复位电路

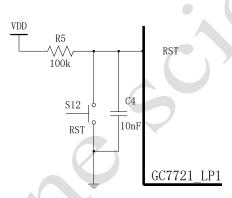


图 16 复位电路

13.8 石英振荡电路

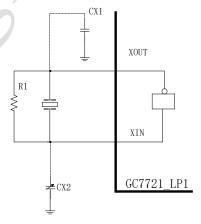


图 17 石英振荡电路

图中 R1 为反向器提供静态工作点, CX2 为频率微调, CX1 为温度补偿。在要求不高的场合, CX1 和 CX2 可以不用。

13.9 蜂鸣器驱动电路

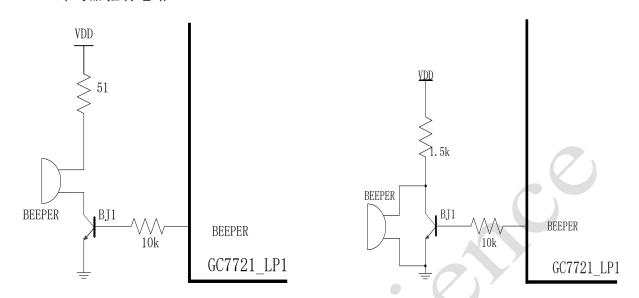


图 18 低阻蜂鸣器接法

图 19 高阻蜂鸣器接法

13.10 档位切换及功能控制电路

S6~S9和S13为档位切换开关,其功能说明见9.1和9.2,S2~S5和S10~S11为功能控制开关, 其功能说明见"按键定义"和"其它功能"说明。

实际应用中,这些开关和按键哪些该用和不该用要视具体情况而定。

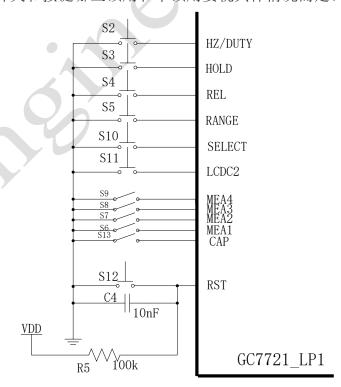


图 20 档位切换及功能控制电路

13.11 交流整流电路

图 21 是 GC7721_LP1 是平均值整流电路图,电路中,交流信号经 R26 进入 IC,由 R26 与 R25,R24,R23,R22 进行分压,分压后的交流信号由 OP10 脚出来,整流后由 ADIP 脚和 ADIN 脚进入 IC,VR2 可调整信号的大小以作交流测量的校准。

交流 240mV 档经 10 倍放大器放大。

图 22 是峰值整流电路图,图 23 是真有效值整流电路。

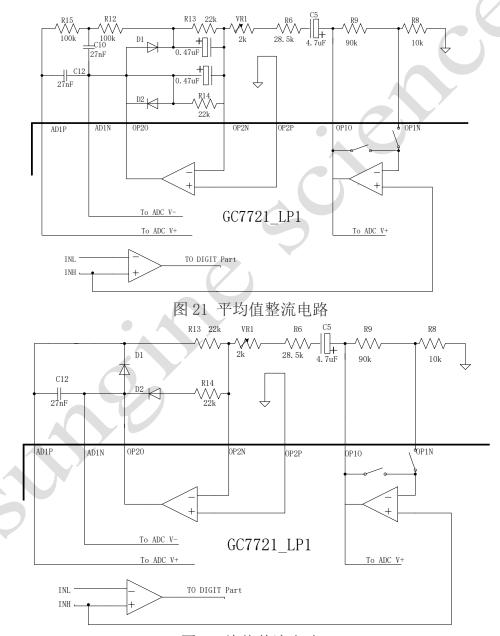


图 22 峰值整流电路

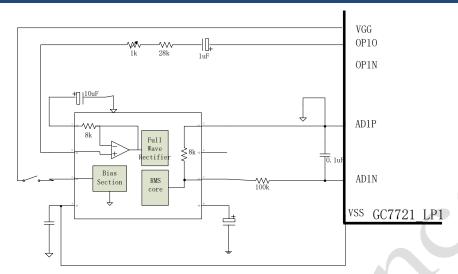
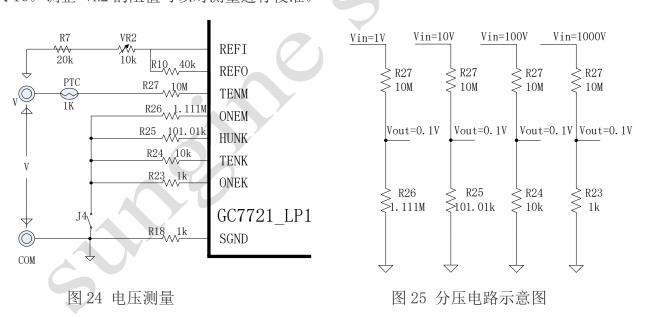



图 23 真有效值整流电路

13.12 电压测量

电压测量时,被测电压由电阻 R27输入,DCmV 不分压,直接进入 IC; 4V、40V、400V、1000V 档电压由 R26、R25、R24、R23 与 R27 分压取得输入电压的 1/10、1/100、1/1000、1/10000,再 送入 IC。调整 VR2 的阻值可以对测量进行校准。

电压测量分压示意如图 25。

分压公式为: Vout=Vin × [Rs/(R27+Rs)], Rs 为 R26、R25、R24 或 R23, 因此, R23、R24、R25、R26、R27 的精度决定各量程的测量精度。

AcmV 档经过 R26 和 R27 分压取得 1/10 的电压经过 R27 送人 IC, 然后经过 10 倍内部放大以满足测试需求, 所以 R8 和 R9 的精度决定了 AcmV 档的测量精度。

13.13 电流测量

电流测量有 A、B 两种模式,区别如下:

模式	A		В		
	ADPC1 开路		ADPC1 接 VSS		
档位	量程	取样电阻	量程	取样电阻	
A	10A	0.01_Ω	10A/4A	0.01_Ω	
mA	400mA/40mA	10_Ω	400mA/40mA	1_{Ω}	
μΑ	4000uA/400uA	$1 \mathrm{k}_\Omega$	4000uA/400μA	100_Ω	
最大压降	4V		0.4V	7	

在 ADPC1 脚悬空模式中,电流信号由 R20 进入 IC。uA 档的取样电阻是 R16+R17+R29,mA 档的取样电阻是 R16+R29,10A 档的取样电阻是 R29。通过切换拨盘档位开关分别测量,当测 μ A 时, J10 断开,J11、J3 合上;当测 mA 时 J11 断开,J10、J3 合上;当用 10A 档测大电流时,J10、J11 断开,J3 合上。

 μ A, mA 和 10A 三档产生的电压降最大为 4V。这些电压送入电压比较器进行比较,若小于 400 mV,该电压信号直接进入 A/D 变换器,若大于 400 mV 则产生自动跳档信号,内部电子开关 K 合上,使 SMV 和 DT (SA) 接通,由 R20 和 R19 分压,取其电压信号的 1/10 送入 A/D 变换器。电阻 R16,R17,R29 及 R19,R20 的精度影响电流测量的精度。

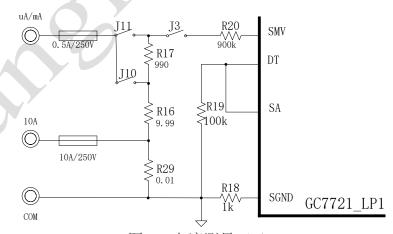


图 26 电流测量 (A)

在 ADPC1 接 VSS 模式中,电流信号由 SA 进入 IC。电流测量时, μ A 档的取样电阻是 R16+R17+R29, mA 档的取样电阻是 R16+R29, 10A 档的取样电阻是 R29。通过切换拨盘档位开关分别测量。当测 μ A 时, J10 断开, J11 合上; 当测 mA 时, J11 断开, J10 合上; 大电流则由 10A 端口进入。

μA, mA 和 10A 三档产生的电压降最大为 0.4V。这些电压送入电压比较器进行比较,若小于 40mV,则送入 10 倍放大器放大后再送入 A/D 变换器;若大于 40mV,则产生自动跳档信号,在微处 理器控制下往上跳一档并将该电流信号直接送入 A/D 变换器。电阻 R16,R17,R29 及 R8,R9 的精 度影响电流测量的精度。

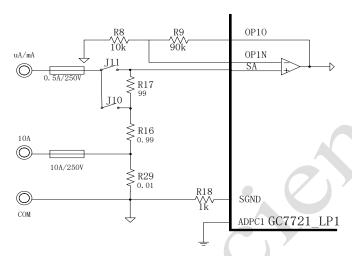


图 27 电流测量 (B)

13.14 电阻测量

电阻的测量是以标准电阻作参考,将待测电阻与标准电阻进行比较测量求得待测电阻值的。40M Ω 档的标准电阻为 $10M\Omega$ (R27),其它各档的标准电阻是 R27 分别与 R26,R25,R24,R23 并联的到的 $1M\Omega$, $100k\Omega$, $10k\Omega$, $1k\Omega$ 电阻。电阻测量时,IC 内部产生 0.4V(相对于 AGND)的电压,此电压分别由电阻 R27 与 R26,R25,R24,R23 输出到待测电阻上,进行比较测量。R21 接 RL,是标准电阻取得参电压的负输入端。 J4,J6 为档位开关,电阻测量时 J4,J6 合上。C13 为电阻测量待测点的滤波电容。

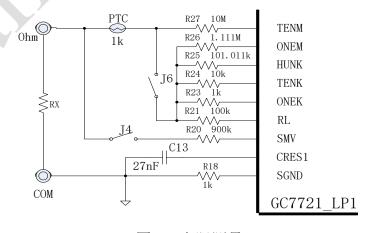


图 28 电阻测量

13.15 二极管测试

二极管测量由 IC 内部产生 1.5V(相对于 AGND) 电压,经 R23 输出,经 PTC1 加到二极管正端。二极管产生的正向压降 VD 约 0.5V-0.7V, VD 经 R20 和 R19 分压得 VD 的 1/10,送入 ADC,显示 VD 读数。 J4 和 J6 是拨盘档位开关。二极管测量时 J4, J6 合上。

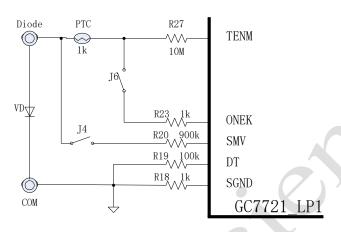
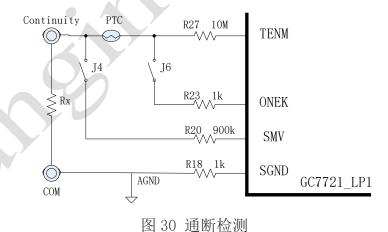



图 29 二极管测量

13.16 通断检测

通断检测是在 $400\,\Omega$ 档进行测量的。通断检测时,IC 内部产生 0.4V 电压(相对于 AGND)经 R23 输出,经 PTC1 加到通断待检测点。J4 和 J6 是拨盘档位开关,通断检测时闭合。Rx 取得电压 VRx,经 R20 输入 IC。当 Rx 小于 $50\,\Omega$,则蜂鸣器发声。

www.sungine.com.cn 2021-01-13 GC7721_LP1-V13

- 30 -

13.17 电容测量

电容测量是通过 R22 对待测电容充放电形成振荡,计算振荡周期求电容值。可以通过调整 R21 来校准电容测量读数。J4 和 J6 为拨盘档位开关,电容测量时,J4 和 J6 合上。(在实际应用的中,若发现 5.120nF 量程在测 量时线性较差,设计时可考虑在电容测量输入端并接一个 1000pF 左右的电容。当测量时按 REL 键使读数为零再测量,这样小量程电容档位的线性较好。)

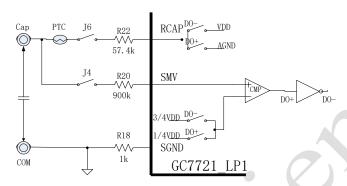


图 31 电容测量

输入端的典型波形见图 32

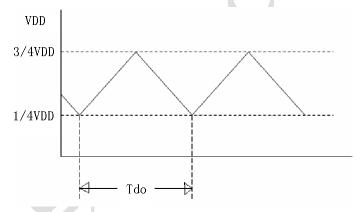


图 32 电容测量输入端典型波形

13.18 频率测量

频率测量见图 33

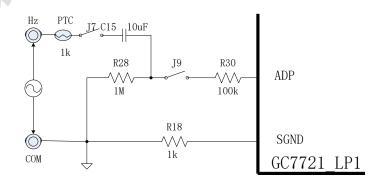


图 33 频率测量

13.19 三极管 hFE 测量

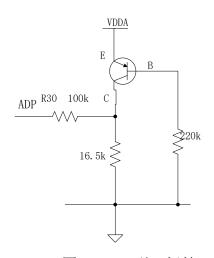


图 34 PNP 型三极管

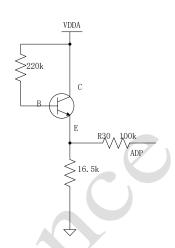


图 35 NPN 型三极管

13.20 温度测量

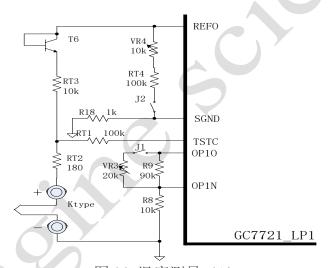


图 36 温度测量(1)

从该图中的热电偶的连接,负极可以直接 AGND; 当热电偶未连接或者损坏时,将显示过载 (OL)。

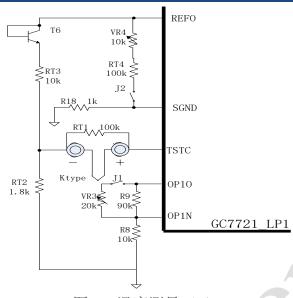


图 37 温度测量 (2)

图 37 中, 热电偶的连接要更麻烦一些, 但当热电偶未连接或损坏时, 该电路将会显示室内温度。

- 1、在图 37 中,三极管 T6 作为二极管使用。由于 T6 的 Vbe 电压随着外界温度变化,温度每上升一度,Vbe 下降 2 2.5mV。因此,这一特性被用于热电偶冷端补偿。在这里要注意:由于每个独立 IC 芯片的基准电压不同,T6 的模型也不尽相同,所以 Vbe 随温度的变化曲线也不同,所以要取得理想的补偿效果,每个芯片的热电偶冷端补偿都不一样,需要调整 RT1,RT2,RT3 和 RT4 到合适的取值。
- 2、容易实施的两个温度校准点有水的冰点(0℃)和沸点(100℃)。图 36 和 37 中的 VR4 用于低温(0℃)时的校准,VR3 用于高温(100℃)校准。当外部连接的 K-type 热电偶的温度系数达到 $40\,\mu\,\text{V/°}$ C 时,可以调整 VR3 以使放大器放大至 2.5 倍。
 - 3、当使用图 36 时请注意以下两方面:
 - 1) 由于 K-type 热电偶的内部阻抗可能影响补偿电压,可以分别改变 RT2 和 RT3 至 1.8k 和 100k 以减小影响。
 - 2) 当电压校准时,由于校准器存在内部阻抗,将会导致校准不精确。因此,最好的测量方法是通过 RT1 直接输入电压。也就是说,正压与 TSTC 连接,负压与 RT1 和 RT2 的交叉点连接。

14、封装尺寸图

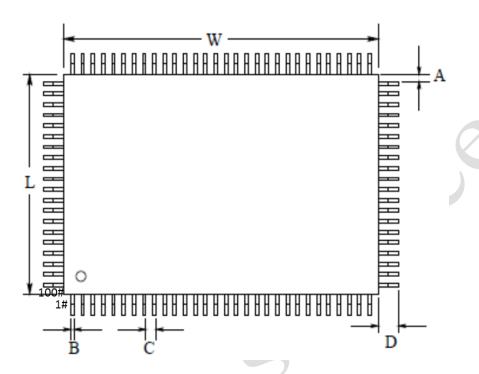


图 35 QFP100 封装图

か ロ.	毫 米			Mill(英制)		
符号	min	typ	max	min	typ	max
W	19. 90	20.00	20. 10	783. 5	787. 4	791. 3
L	13. 90	14. 00	14. 10	547. 2	551. 2	555. 1
A		0. 425			16. 7	
В	0.20	0.30	0.40	7. 9	11.8	15. 7
С	NY'	0.65			25. 6	
D C		2. 50			98. 4	

15、订货和包装信息

订货型号	供货方式
GC7721-LP1	裸片、芯片盒包装、每盘 110 片包装
GC7721Q-P1	塑料封装、塑胶体尺寸 20 X 14、每盘 66 片包装

16、文档修改记录

版本	更改内容 (每行一项)	更改日期&更改者(简写)
V11	规范文档格式	20130815 by rainbow
V12	修改应用图,包括总图和裸片应用图	20140902 by anyh
V13	删除说明书中重复内容, 对内部描	20150826 by liuyy
	述一些细节性错误进行修改。	
V13	将自动关机时间由 30 分钟改为 15	20210113 by wyq
	分钟	