

三相正弦波无刷直流电机控制器

፟ 概述

GC3202A 是一款无需单片机,用户可直接做控制设定的单片直流电机控制芯片,应用电路所需的外部元件很少。适合做三相正弦波无刷电机(BLDC),或永磁同步电机(PSPM)控制芯片。应用上和 FCM8202 保持兼容。

该芯片采用了霍尔传感器作为定位信号,芯片内集成的控制系统可以通过开关三相转换器进行 PWM 驱动转换。可选的 PWM 模式包含了正弦波模式和方波模式。方波模式包括了可提高电机驱动效率的 PWM-PWM 和 PWM-ON 方式。是一款三相正弦波无刷电机(BLDC),或永磁同步电机(PSPM)控制芯片。该芯片采用了霍尔传感器作为定位信号,集成的控制系统可以通过开关三相转换器进行 PWM 驱动转换。PWM 模式包含了正弦波模式和方波模式。方波模式包括了可提高电机驱动效率的 PWM-PWM 和 PWM-ON 方式。

GC3202A 集成了完整的保护功能,包括过压,过流,过温,以及短路保护,可防止电机控制电路和电机本身受损。在负载应力大,要求比较高的应用环境中这一点尤其重要。

🥦 特点

- ◆ 支持空间矢量调制 (SVM)
- ◆ 支持正弦波和方波解决方案
- ◆ 内置用于扭力闭环控制的误差放大器
- ◆ 占空比直接控制
- ◆ 方波 120°, 正弦波 180° 导通
- ◆ PLL 角度检测(霍尔传感器)
- ◆ 电流领先相位校正
- ◆ 两个可选死区时间、可调 OC 定时器
- ◆ 同步整流
- ◆ 过压和欠压保护
- ◆ 用于过压保护的电机和功率三极管
- ◆ 三级过流保护(0CP)

⋈ 应用范围

- ◆ BLDC 电机, PMSM 电机控制
- ◆ 低噪声电机控制应用
- ◆ 高效风扇,泵,电动工具
- ◆ 小型家用电器 BLDC 电机控制

☆ 芯片内部框图

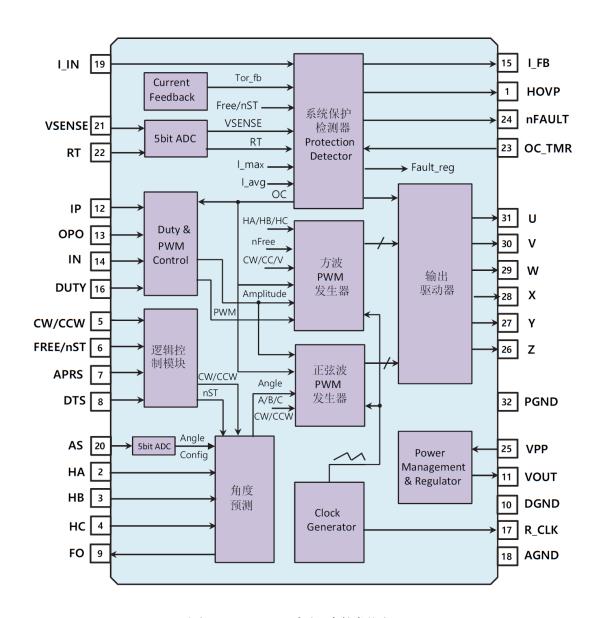


图 1. GC3202A 内部功能框图

☞ 应用电路示意图

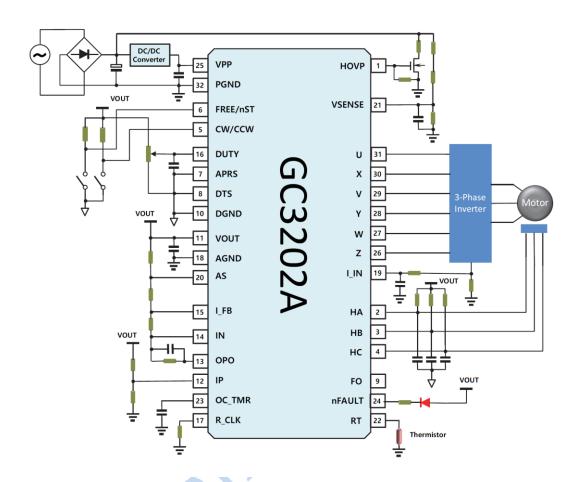
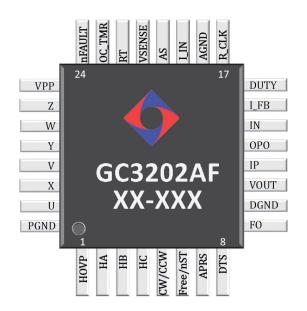
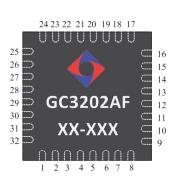




图 2. GC3202A 应用电路图

🖎 管脚图

QFN32-5X5外形图(顶视)

图 3. GC3202A LQFP32 (7X7) QFN(5X5) 封装管脚示意图

□ 极限工作条件(超过此表规定工作条件可能导致无法恢复的芯片功能性损坏,或电参数超差)

符号	参	数	最小值	最大值	单 位
Vpp	电源电压		0	30	V
Tj	结温			150	$^{\circ}$
LCD.	熟由盐由贴泊效 加	人体放电模型 JESD22-A114		2.5	KV
ESD	静电放电防护等级	元件充电模型 JESD22-C101		1,25	KV

表 1. GC3202A 极限工作条件

★ 推荐工作条件

说明:推荐的工作条件可使 GC3202A 在安全可靠的条件下实现最佳的器件效能,双竞建议用户不要按照极限工作条件设计应用电路。

符号	参数	最小值	典型值	最大值	单 位
TA	工作环境温度	-40		+125	$^{\circ}$
Vpp	电源电压	10	12	17	V
fsys	系统时钟	0.96	1. 28	1. 92	MHz
R_CLK	时钟发生器外接电阻		12		kΩ
R_IN	I_IN 偏置电阻		10		kΩ

表 2. GC3202A 推荐工作条件

◆ 管脚功能定义

引脚号	管脚名称	说明
1	HOVP	电动机驱动过压保护输出。可连接外部功率三极管用于释放反向电动势
2	НА	霍尔传感器 A 输入端, U 相磁场检测
3	НВ	霍尔传感器 B 输入端, V 相磁场检测
4	НС	霍尔传感器 C 输入端, W 相磁场检测
5	CW/CCW	方向控制输入,此引脚内部有 200KΩ 上拉电阻。电平: 高 CW,低 CCW
6	FREE/nST	闲置/启动控制输入,内部有 200KΩ 上拉电阻。电平:高 Free,低 nST
7	APRS	角度预测范围选择输入,内部有 200KΩ 上拉电阻。电平: 低=0.8Hz-80Hz 高=3.2-320Hz(霍尔频率)
8	DTS	截止时间选择输入。此引脚内部有 200KΩ 上拉电阻。电平低: 3μs, 高: 4μs.
9	FO	翻转脉冲输出,每转脉冲数=电机磁极数 /2 X 3
10	DGND	数字地。
11	VOUT	稳压器输出。应此管脚和地之间接一个至少 0.1uF 的电容。
12	IP	转矩误差放大器正向输入。
13	OPO	转矩误差放大器输出。
14	IN	转矩误差放大器反向输入。
15	I_FB	电流反馈输出。
16	DUTY	PWM 占空比控制输入, 目的是直接控制 PWM 周期的占空比
17	R_CLK	时钟发生器外接电阻。可通过这个电阻值决定内部时钟的振荡频率
18	AGND	模拟地。
19	I_IN	电流反馈输入端。
20	AS	角度偏移输入。作用是校正 PWM 输出信号的起始角度。校正范围 0 到 60 度,与感应磁场电压相关。
21	VSENSE	电机驱动电压传感电阻,用于确定过电压保护的电压电平
22	RT	热敏电阻电压输入,外接一个负温度系数的热敏电阻实现过温保护
23	OC_TMR	过载超时可编程输入,通过外接电容的数值决定过载保护的延迟时间。
24	nFAULT	故障标志。漏极开路输出,此管脚低电平状态指示系统故障
25	VPP	电源电压输入。
26	Z	W相的 PWM 低侧输出。
27	W	W相的 PWM 高侧输出。
28	Y	V 相的 PWM 低侧输出。
29	V	V 相的 PWM 高侧输出。
30	X	U相的 PWM 低侧输出。
31	U	U相的 PWM 高侧输出。
32	PGND	电源地。

表 3. GC3202A 管脚功能定义

🗷 电参数

除非特别说明, 在 Vpp=12V, 环境温度 Ta=25℃

符 号	参数	工作条件	最小值	典型值	最大值	单位
Vpp 部分						
VVPP_ON	导通阈值电压		8.5	9.0	9.5	V
Vvpp_off	关断阈值电压		7.5	8.0	8.5	V
IDD_OP	工作电流	VPP=12V, Fsys=1.28MHz	4	5	6.5	mA
稳压部分						
V vout	稳压器输出电压	输出电流 5mA	5.0	5.2	5.4	V
Ivout	稳压器输出电流	Vvout=5.2V			10	mA
Суоит	稳压器外接电容		0.1			uF
数字 I/O 部	分					
VIH_HALL	霍尔信号高电平输入		4			V
VIL_HALL	霍尔信号低电平输入			7	1	V
VHYS_HALL	霍尔信号滞回电压		2.0	2.5	3.0	V
TDEB_HALL	霍尔信号去抖动时间			5		uS
RDIO_UP	数字 I/O 内部上拉电阻		150K	200K	250K	Ohm
高压 I/O 部分						
Voh_pwm	PWM 信号输出高电平*	VPP=12V, Io=4mA	10			V
Vol_PWM	PWM 信号输出低电平*	VPP=12V, Io=4mA			1	V
Voh_hovp	HOVP 输出高电平	VPP=12V, Io=1mA	7.5	8	8.5	V
Vol_Hovp	HOVP 输出低电平	VPP=12V, Io=1mA			1	V
PWM 控制部	部分					
V FD	DUTY 脚最大占空比电压		4.0	4.3	4.6	V
V zd	DUTY 脚零占空比电压			0.7		V
tpwm_min	PWM 最小开启时间	R_CLK=12KΩ		1		uS
TDEAD0	PWM 截止时间 3uS	DTS=LOW	2.15	2.95	3.45	uS
TDEAD1	PWM 截止时间 4uS	DTS=HIGH	3.35	3.95	4.65	uS
fPWM_20K	PWM 频率 20KHz	R_CLK=12KΩ	18.5	20.0	21.5	KHz
ISOURCE_OPO	OPO 引脚拉电流能力	IP=5V,IN=0V,OPO=0V	4.0	5.0	6.0	mA
ISINK_OPO	OPO 引脚灌电流能力	IP=0V,IN=5V, OPO=5V	-4.0	-5.0	-6.0	mA
Averr	转矩放大器增益			60		dB
GBWerr	转矩放大器增益带宽积			10		MHz
正弦 PWM	发生器					
VSIN_ENA	DUTY 脚正弦波使能阈值			0.75		V
Vsin_dis	DUTY 脚正弦波禁用阈值			0.65		V
tsin_ena	正弦波使能去抖动时间			1		ms
	正弦波禁用去抖动时间			100		

过流保护部分						
Vocp_sh	短路电流保护阈值电压			2.5		V
Vocp_cyc	每周期电流保护阈值电压			1.3		V
Vocp_ol	过载电流保护阈值电压			1.2		V
Voc_tmr	OC_TMR 脚阈值电压			2.5		V
ITMR_CHG	OC_TMR 充电电流	OC_TMR=0V	30	40	50	uA
ITMR_DIS	OC_TMR 放电电流	OC_TMR=5V	5	10	15	uA
BIAS_I_IN	I_IN 偏置电流	R _{I_IN} =10kΩ	40	50	60	uA
lo_i_fb	I_FB 输出电流			0.5		mA
G I_FB	I_FB 输出增益			8		
过压/欠压保	护(OVP/UVP)部分					
Vov_vpp	系统过压保护阈值电压			19		V
Vov_vpp_rls	系统过压保护释放电压			18		V
tov_vpp	系统过压保护去抖动时间			100		uS
V UV_VPP	系统欠压保护阈值电压		7.5	8	8.5	V
Vuv_vpp_rls	系统欠压保护释放电压	•	8.5	9	9.5	V
V uv_vout	VOUT 欠压保护阈值电压			4		V
Vuv_vout_rls	VOUT 欠压保护释放电压			4.5		V
Vov_motor	电机驱动 OVP 阈值电压	5	4.3	4.5	4.8	V
V _{RL_MOTOR}	电机驱动 OVP 释放电压			4.0		V
过温保护(OT	'P) 部分					
V RT	过温保护门槛电压		0.9	1	1.1	>
VRT_RLS	过温保护释放电压	7	1.15	1.2	1.25	V
I RT	RT 脚电流		40	50	60	uA
引脚开路短距	各保护 ————					
V SHORT	引脚短路保护	R_CLK pin		0.2		V
VOPEN	引脚开路保护	R_CLK and RT pins	4.6	4.8	5.2	V

表 3. GC3202A 电参数表

🖎 功能说明

电源管理和稳压器

GC3202A 可以在 10V 至 17.5V (Vpp) 的宽电压范围内工作。VOUT 引脚是内部稳压器的输出端,典型的电压输出范围是 $5V\sim 5.2V$ 。为了使 VOUT 电路稳定,需要在 VOUT 引脚和地之间外接一个电容。如果 Vpp 低于内部设定的 8V 保护阈值电压,FCM8202 将会停止工作,内部所有寄存器将被复位。

时钟发生器

GC3202A 芯片配有一个可编程的振荡器。基础频率由 R_CLK 外加电阻决定,系统时钟可通过编程控制在 960kHZ 到 1920kHz。PWM 波的开关频率等于系统时钟的 1/64。因此,当系统时钟为 960kHz 时,PWM 等于 960kHz/64=15kHz。如果要设计 PWM 的开关频率=20KHz,则系统时钟频率应该被编程设置为 1.28MHz。

PWM 切换

GC3202A 支持方波 PWM 和正弦波 PWM 方式对无刷直流电机的控制。控制器采用霍尔传感器设计,用于对电机转子所处位置定位。对于方波模式,PWM 输出切换方式见表 5。

CW	Hall	Hall	U-V-W	X-Y-Z
Х	000	0	0-0-0	0-0-0
Х	111	7	0-0-0	0-0-0
1	001	1	P-0-0	Pb-1-0
1	011	3	0-0-P	0-1-Pb
1	010	2	0-0-P	1-0-Pb
1	110	6	0-P-0	1-Pb-0
1	100	4	0-P-0	0-Pb-1
1	101	5	P-0-0	Pb-0-1
0	101	5	0-0-P	1-0-Pb
0	100	4	0-0-P	0-1-Pb
0	110	6	P-0-0	Pb=1-0
0	010	2	P-0-0	Pb-0-1
0	011	3	0-P-0	0-Pb-1
0	001	1	0-P-0	1-Pb-0

表 5. PWM 输出切换方式

注意:

- 1. P= PWM, Pb= PWM inverse.
- 2. X 无关

霍尔信号输入

为了防止霍尔信号失效, GC3202A 给输入信号设置了 3-6us 的去抖动时间。当霍尔器件产生的信号变化缓慢,可能会造成不确定的识别导致错误。通过芯片内建的去抖动电路,可以将误识别造成的相关错误减到最小。

PWM 任务循环和操作

PWM 占空比与 OPO 引脚和 DUTY 引脚上的电平成正比。FREE/nST 引脚被用作使 PWM 信号有效。当 FREE/nST 引脚设置成逻辑高电平时,PWM 状态设置成关断模式,所有 PWM 输出(U, V, W, X, Y, Z 引脚)均为逻辑低电平。当 FREE/nST 引脚变为逻辑低电平时,GC3202A 即启动 PWM 控制。

正弦波形发生器

GC3202A 集成了用于正弦波 PWM 功能所需的空间向量调制器 (SVM)。角度检测电路利用电机霍尔信号来锁定电机转子的相位位置。分辨率为 32 步/60°。通过 PWM操作,各相位的电机电流为正弦波。各相位间的相位差为 120°.

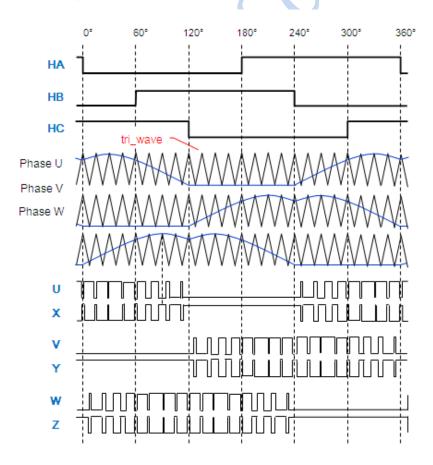


图 4. CW=1 时的正弦波输出波形

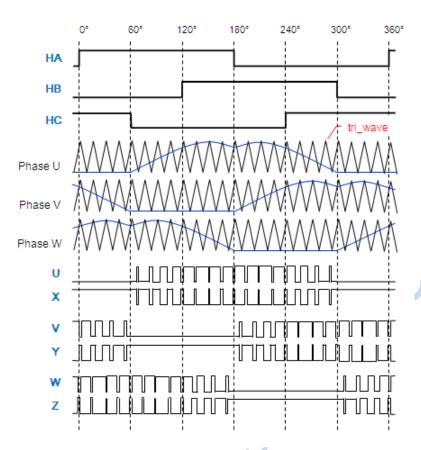


图 5. CW=0 时的正弦波输出波形

电流反馈与保护

电流反馈电路提供了两种主要功能:

(1) 生成电机控制的电流反馈信号 (2) 过流保护

I_IN 引脚输出一个 50uA 的电流,给 I_IN 引脚建立直流偏置,以防止产生负电压。等式(1)表示了 I_FB 和 I_IN 的关系。建议在 I_IN 端口上建立 0.5V 的直流偏压,最大平均电流信号是 1V。通过使用这些参数,最大 I_FB 信号波动在 0.5V ~ 4.5V 之间。

$$V_{I_FB} = (V_S * 8) + (I_{BIAS_I_IN} * R_{BIAS})$$
 (1)



图 6. 偏置电流反馈流向示意图

GC3202A 提供三种不同等级的过流保护(OCP)。第一级是 1.2V,用于有过流定时器延时的过载电流保护。如果 I_IN 高于 1.2V,过流定时器就会被触发。一旦定时器超出其时限,OC 寄存器就会处于使能状态。第二级是 1.3V,用于逐周期限流。当 I_IN > 1.3V,PWM 信号会被立即关断。第三级是 2.5V,是用来做短路保护。如果 I_IN > 2.5V超过 3 个 PWM 脉冲,所有的 PWM 输出端(U, V, W, X, Y, Z)会被全部关断。

故障与保护

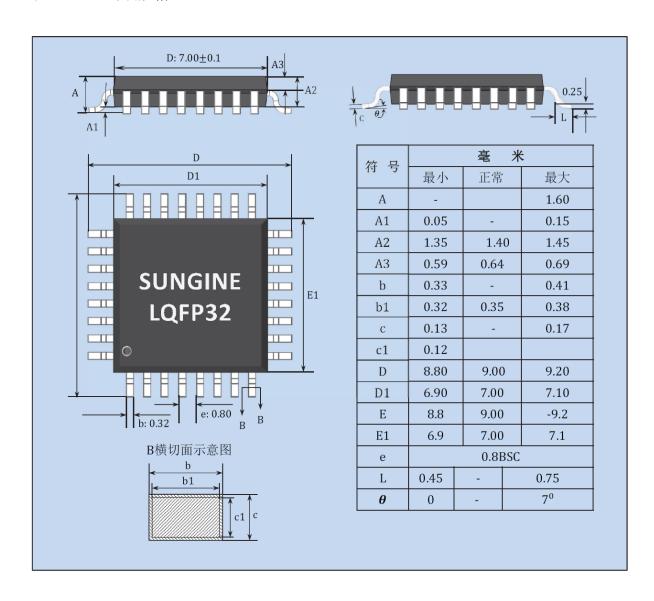
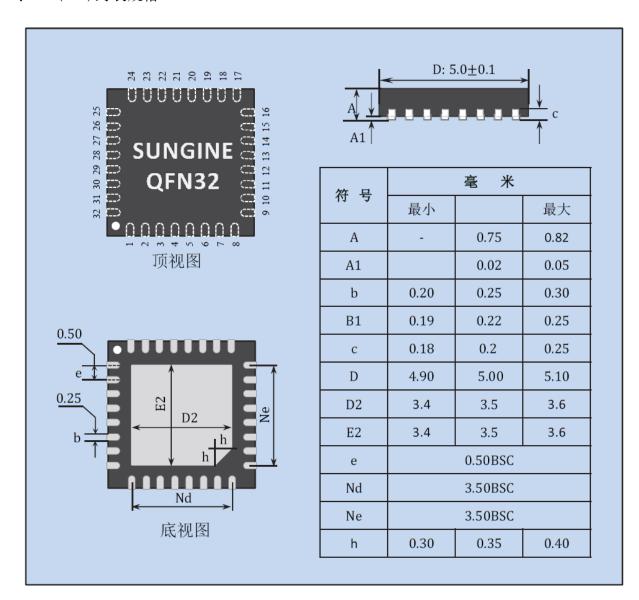

类型	状态	触发	发布
Vpp 0V	释放	Vpp>19V	Vpp<18V
V _{pp} UV	释放,复位	Vpp<8V	Vpp>9V
Vout UV	释放	V _{OUT} <4V	Vоит>4. 5V
RT	释放	RT<1.0V	RT>1. 2V
0S	释放	开路和断路	FREE/nST ∕
霍尔错误	释放	霍尔=000 或 111	
HOVP	释放	V _{SENSE} >4. 5V	Vsense < 4. 0V
0C_Latch	释放	I_IN>1.2V	FREE/nST ∕
SHORT	释放	I_IN>2.5V	FREE/nST ↗

表 6. 故障与保护状态表


≥ 封装外形及物理尺寸

LQFP32-7X7 封装规格

QFN32(5X5)封装规格

↘ 订货信息

产品型号	供货方式
GC3202AF	LQFP32 封装片,托盘装,每盘 250 片,最小包装箱 10 盘
GC3202AQ	QFN32 封装片,托盘装,每盘 490 片,最小包装箱 10 盘。

≥ 文档创建和修改信息

版本	更改内容(每行一项)	更改日期&更改者(简写)
V10	创建	2018-12-17 by qxs
V11	修改第一页文档,增加 QFN 封装	2025-09-05 by qxs